AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (44.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Combining scanning tunneling microscope (STM) imaging and local manipulation to probe the high dose oxidation structure of the Si(111)-7×7 surface

Dogan Kaya1,2Richard J. Cobley3( )Richard E. Palmer3
Department of Electronics and Automation, Vocational School of Adana, Cukurova University, 01160 Cukurova, Adana, Turkey
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
Show Author Information

Graphical Abstract

Abstract

Understanding the atomistic formation of oxide layers on semiconductors is important for thin film fabrication, scaling down conventional devices and for the integration of emerging research materials. Here, the initial oxidation of Si(111) is studied using the scanning tunneling microscope. Prior to the complete saturation of the silicon surface with oxygen, we are able to probe the atomic nature of the oxide layer formation. We establish the threshold for local manipulation of inserted oxygen sites to be +3.8 V. Only by combining imaging with local atomic manipulation are we able to determine whether inserted oxygen exists beneath surface-bonded oxygen sites and differentiate between sites that have one and more than one oxygen atom inserted beneath the surface. Prior to the creation of the thin oxide film we observe a flip in the manipulation rates of inserted oxygen sites consistent with more oxygen inserting beneath the silicon surface.

References

[1]
Tilli, M.; Motooka, T.; Airaksinen, V. M.; Franssila, A.; Paulasto-Kröckel, M.; Lindroos, V. Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed.; Amsterdam: William Andrew, 2015.
[2]
McNerny, D. Q.; Viswanath, B.; Copic, D.; Laye, F. R.; Prohoda, C.; Brieland-Shoultz, A. C.; Polsen, E. S.; Dee, N. T.; Veerasamy, V. S.; Hart, A. J. Direct fabrication of graphene on SiO2 enabled by thin film stress engineering. Sci. Rep. 2014, 4, 5049.
[3]
Zhu, W. H.; Zheng, G.; Cao, S.; He, H. Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study. Sci. Rep. 2018, 8, 10537.
[4]
Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72-93.
[5]
Yu, M.; Xu, W.; Benjalal, Y.; Barattin, R.; Lægsgaard, E.; Stensgaard, I.; Hliwa, M.; Bouju, X.; Gourdon, A.; Joachim, C. et al. STM manipulation of molecular moulds on metal surfaces. Nano Res. 2009, 2, 254-259.
[6]
Li, Z.; Schouteden, K.; Iancu, V.; Janssens, E.; Lievens, P.; van Haesendonck, C.; Cerdá, J. I. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCl films. Nano Res. 2015, 8, 2223-2230.
[7]
Murata, Y.; Cavallucci, T.; Tozzini, V.; Pavliček, N.; Gross, L.; Meyer, G.; Takamura, M.; Hibino, H.; Beltram, F.; Heun, S. Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene. Nano Res. 2018, 11, 864-873.
[8]
Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Bozhko, S. I.; Chaika, A. N.; Sergeeva, N. N.; Bulfin, B.; Shvets, I. V. Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. Nano Res. 2013, 6, 929-937.
[9]
MacLeod, J. M.; Lipton-Duffin, J.; Fu, C. Y.; Rosei, F. Inducing nonlocal reactions with a local probe. ACS Nano 2009, 3, 3347-3351.
[10]
Maeda, K.; Nakamura, Y. Spreading effects in surface reactions induced by tunneling current injection from an STM tip. Surf. Sci. 2003, 528, 110-114.
[11]
Nakamura, Y.; Mera, Y.; Maeda, K. Nanoscale imaging of electronic surface transport probed by atom movements induced by scanning tunneling microscope current. Phys. Rev. Lett. 2002, 89, 266805.
[12]
Lu, X. K.; Polanyi, J. C.; Yang, J. A reversible molecular switch based on pattern-change in chlorobenzene and toluene on a Si(111)-(7×7) surface. Nano Lett. 2006, 6, 809-814.
[13]
Maksymovych, P.; Dougherty, D. B.; Zhu, X. Y.; Yates, J. T., Jr. Nonlocal dissociative chemistry of adsorbed molecules induced by localized electron injection into metal surfaces. Phys. Rev. Lett. 2007, 99, 016101.
[14]
Persson, B. N. J.; Avouris, P. Local bond breaking via STM-induced excitations: The role of temperature. Surf. Sci. 1997, 390, 45-54.
[15]
Schull, G.; Berndt, R. Orientationally ordered (7×7) superstructure of C60 on Au(111). Phys. Rev. Lett. 2007, 99, 226105.
[16]
Sloan, P. A.; Sakulsermsuk, S.; Palmer, R. E. Nonlocal desorption of chlorobenzene molecules from the Si(111)-(7×7) surface by charge injection from the tip of a scanning tunneling microscope: Remote control of atomic manipulation. Phys. Rev. Lett. 2010, 105, 048301.
[17]
Sakulsermsuk, S.; Sloan, P. A.; Palmer, R. E. A new mechanism of atomic manipulation: Bond-selective molecular dissociation via thermally activated electron attachment. ACS Nano 2010, 4, 7344-7348.
[18]
Sloan, P. A.; Palmer, R. E. Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature 2005, 434, 367-371.
[19]
Stipe, B. C.; Rezaei, M. A.; Ho, W. Site-specific displacement of Si adatoms on Si(111)- (7×7). Phys. Rev. Lett. 1997, 79, 4397-4400.
[20]
Inami, E.; Hamada, I.; Ueda, K.; Abe, M.; Morita, S.; Sugimoto, Y. Room-temperature-concerted switch made of a binary atom cluster. Nat. Commun. 2015, 6, 6231.
[21]
Ko, E.; Lee, K. R.; Choi, H. J. Tunneling properties versus electronic structures in Si/SiO2/Si junctions from first principles. Phys. Rev. B 2013, 88, 035318.
[22]
Medina, H.; Lin, Y. C.; Jin, C. H.; Lu, C. C.; Yeh, C. H.; Huang, K. P.; Suenaga, K.; Robertson, J.; Chiu, P. W. Metal-free growth of nanographene on silicon oxides for transparent conducting applications. Adv. Funct. Mater. 2012, 22, 2123-2128.
[23]
Tan, H. R.; Babal, P.; Zeman, M.; Smets, A. H. M. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells. Solar Energy Mater. Solar Cells 2015, 132, 597-605.
[24]
Ishizaka, A.; Iwata, S. Si-SiO2 interface characterization from angular dependence of X-ray photoelectron spectra. Appl. Phys. Lett. 1980, 36, 71-73.
[25]
Muller, D. A.; Sorsch, T.; Moccio, S.; Baumann, F. H.; Evans-Lutterodt, K.; Timp, G. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 1999, 399, 758-761.
[26]
Hollinger, G.; Himpsel, F. J. Probing the transition layer at the SiO2-Si interface using core level photoemission. Appl. Phys. Lett. 1984, 44, 93-95.
[27]
Oh, J. H.; Yeom, H. W.; Hagimoto, Y.; Ono, K.; Oshima, M.; Hirashita, N.; Nywa, M.; Toriumi, A.; Kakizaki, A. Chemical structure of the ultrathin SiO2\Si(100) interface: An angle-resolved Si 2p photoemission study. Phys. Rev. B 2001, 63, 205310.
[28]
Höfer, U.; Morgen, P.; Wurth, W.; Umbach, E. Initial stages of oxygen adsorption on Si(111). II. The molecular precursor. Phys. Rev. B 1989, 40, 1130-1145.
[29]
Mayne, A. J.; Rose, F.; Comtet, G.; Hellner, L.; Dujardin, G. Variable temperature STM studies of the adsorption of oxygen on the Si(111)-7×7 surface. Surf. Sci. 2003, 528, 132-137.
[30]
Martel, R.; Avouris, P.; Lyo, I. W. Molecularly adsorbed oxygen species on Si(111)-(7×7): STM-induced dissociative attachment studies. Science 1996, 272, 385-388.
[31]
Rusimova, K. R.; Purkiss, R. M.; Howes, R.; Lee, F.; Crampin, S.; Sloan, P. A. Regulating the femtosecond excited-state lifetime of a single molecule. Science 2018, 361, 1012-1016.
[32]
Rusimova, K. R.; Bannister, N.; Harrison, P.; Lock, D.; Crampin, S.; Palmer, R. E.; Sloan, P. A. Initiating and imaging the coherent surface dynamics of charge carriers in real space. Nat. Commun. 2016, 7, 12839.
[33]
Rusimova, K. R.; Sloan, P. A. Molecular and atomic manipulation mediated by electronic excitation of the underlying Si(111)-7×7 surface. Nanotechnology 2016, 28, 054002.
[34]
Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A. Atomically resolved real-space imaging of hot electron dynamics. Nat. Commun. 2015, 6, 8365.
[35]
Lock, D.; Sakulsermsuk, S.; Palmer, R. E.; Sloan, P. A. Mapping the site-specific potential energy landscape for chemisorbed and physisorbed aromatic molecules on the Si(1 1 1)-7×7 surface by time-lapse STM. J. Phys. Condens. Matter 2015, 27, 054003.
[36]
Pan, T. L.; Sloan, P. A.; Palmer, R. E. Concerted thermal-plus-electronic nonlocal desorption of chlorobenzene from Si(111)-7×7 in the STM. J. Phys. Chem. Lett. 2014, 5, 3551-3554.
[37]
Pan, T. L.; Sloan, P. A.; Palmer, R. E. Non-local atomic manipulation on semiconductor surfaces in the STM: The case of chlorobenzene on Si(111)-7×7. Chem. Rec. 2014, 14, 841-847.
[38]
Sakulsermsuk, S.; Sloan, P. A.; Theis, W.; Palmer, R. E. Calibrating thermal and scanning tunnelling microscope induced desorption and diffusion for the chemisorbed chlorobenzene/Si(111)7×7 system. J. Phys. Condens. Matter 2010, 22, 084002.
[39]
Sloan, P. A.; Hedouin, M. F. G.; Palmer, R. E.; Persson, M. Mechanisms of molecular manipulation with the scanning tunneling microscope at room temperature: Chlorobenzene/Si(111)-(7×7). Phys. Rev. Lett. 2003, 91, 118301.
[40]
Lyo, I. W.; Avouris, P. Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science 1991, 253, 173-176.
[41]
Lee, S. H.; Kang, M. H. Origin of O 1s core-level shifts on oxygen adsorbed Si(111)-(7×7). Phys. Rev. Lett. 2000, 84, 1724-1727.
[42]
Lee, S. H.; Kang, M. H. Identification of the initial-stage oxidation products on Si(111)-(7×7). Phys. Rev. Lett. 1999, 82, 968-971.
[43]
Comtet, G.; Hellner, L.; Dujardin, G.; Bobrov, K. Adsorption of O2 on Si(111)-7×7 at 300 and 30 K studied by ion photodesorption and electron photoemission. Phys. Rev. B 2001, 65, 035315.
[44]
Sakamoto, K.; Doi, S.; Ushimi, Y.; Ohno, K.; Yeom, H. W.; Ohta, T.; Suto, S.; Uchida, W. Adsorption process of metastable molecular oxygen on a Si(111)-7×7 surface. Phys. Rev. B 1999, 60, R8465-R8468.
[45]
Onoda, J.; Ondráček, M.; Yurtsever, A.; Jelínek, P.; Sugimoto, Y. Initial and secondary oxidation products on the Si(111)-(7 × 7) surface identified by atomic force microscopy and first principles calculations. Appl. Phys. Lett. 2014, 104, 133107.
[46]
Leibsle, F. M.; Samsavar, A.; Chiang, T. C. Oxidation of Si(111)-(7×7) as studied by scanning tunneling microscopy. Phys. Rev. B 1988, 38, 5780-5783.
[47]
Tokumoto, H.; Miki, K.; Murakami, H.; Bando, H.; Ono, M.; Kajimura, K. Real-time observation of oxygen and hydrogen adsorption on silicon surfaces by scanning tunneling microscopy. J. Vac. Sci. Technol. A 1990, 8, 255-258.
[48]
Kaya, D. The effect of electric field on a fullerene molecule on a metal surface by a nano STM tip. Phys. B Condens. Matter 2019, 557, 126-131.
[49]
Niu, C. Y.; Wang, J. T. Adsorption and dissociation of oxygen molecules on Si(111)-(7×7) surface. J. Chem. Phys. 2013, 139, 194709.
[50]
Wiggins, B.; Avila-Bront, L. G.; Edel, R.; Sibener, S. J. Temporally and spatially resolved oxidation of Si(111)-(7×7) using kinetic energy controlled supersonic beams in combination with scanning tunneling microscopy. J. Phys. Chem. C 2016, 120, 8191-8197.
[51]
Hasegawa, T.; Kohno, M.; Hosoki, S. Initial stage of oxygen adsorption onto a Si(111)-7×7 surface studied by scanning tunneling microscopy. Jpn. J. Appl. Phys. 1994, 33, 3702-3705.
[52]
Caldas, M. J.; Baierle, R. J.; Capaz, R. B.; Artacho, E. Ab initio study of atomic oxygen adsorption on the Si(111)7×7 surface. Phys. B Condens. Matter 2001, 308-310, 329-332.
Nano Research
Pages 145-150
Cite this article:
Kaya D, Cobley RJ, Palmer RE. Combining scanning tunneling microscope (STM) imaging and local manipulation to probe the high dose oxidation structure of the Si(111)-7×7 surface. Nano Research, 2020, 13(1): 145-150. https://doi.org/10.1007/s12274-019-2587-1
Topics:

850

Views

21

Downloads

4

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 15 August 2019
Revised: 04 November 2019
Accepted: 28 November 2019
Published: 02 January 2020
© The Authors 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return