AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage

Yuqing Liao1Chun Wu2Yaotang Zhong1Min Chen1Luyang Cai1Huirong Wang1Xiang Liu1,3,4( )Guozhong Cao5( )Weishan Li1,3( )
School of Chemistry, South China Normal University, Guangzhou 510006, China
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou 510006, China
School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
Show Author Information

Graphical Abstract

Abstract

A novel hybrid, highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide (Co3S4/CoMo2S4@rGO), is reported as anode for lithium and sodium ion storage. The hybrid is synthesized by one-step hydrothermal method but exhibits excellent lithium and sodium storage performances. The as-synthesized Co3S4/CoMo2S4@rGO presents reversible capacity of 595.4 mA·h·g-1 and 408.8 mA·h·g-1 after 100 cycles at a current density of 0.2 A·g-1 for lithium and sodium ion storages, respectively. Such superior performances are attributed to the unique composition and structure of Co3S4/CoMo2S4@rGO. The rGO provides a good electronically conductive network and ensures the formation of spinel Co3S4/CoMo2S4 nanoparticles, the Co3S4/CoMo2S4 nanoparticles provide large reaction surface for lithium and sodium intercalation/deintercalation, and the spinel structure allows fast lithium and sodium ion diffusion in three dimensions.

Electronic Supplementary Material

Download File(s)
12274_2019_2594_MOESM1_ESM.pdf (6.3 MB)

References

[1]
Wang, H. R.; Huang, Y. S.; Huang, C. F.; Wang, X. S.; Wang, K.; Chen, H. B.; Liu, S. B.; Wu, Y. P.; Xu, K.; Li, W. S. Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim. Acta 2019, 313, 423-431.
[2]
Lin, Z. H.; Li, J. H.; Huang, Q. M.; Xu, K.; Fan, W. Z.; Yu, L.; Xia, Q. B.; Li, W. S. Insights into the Interfacial Instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries. J. Phys. Chem. C 2019, 123, 12902-12909.
[3]
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.
[4]
Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun. 2016, 7, 13318.
[5]
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.
[6]
Wu, C.; Zhu, Y.; Guan, C.; Jia, C. K.; Qin, W.; Wang, X. Y.; Zhang, K. L. Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices. J. Mater. Chem. A 2019, 7, 18417-18427.
[7]
Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Sun, H. M.; Tao, Z. L.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210-2222.
[8]
Wang, L. L.; Gu, X. L.; Zhao, L. Y.; Wang, B.; Jia, C. K.; Xu, J. L.; Zhao, Y. F.; Zhang, J. J. ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries. Electrochim. Acta 2019, 295, 107-112.
[9]
Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019, 12, 525-529.
[10]
Wang, Y.; Wang, X. Y.; Li, X. L.; Yu, R. Z.; Chen, M. F.; Tang, K.; Zhang, X. H. The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chem. Eng. J. 2019, 360, 139-147.
[11]
Yan, Z. C.; Tang, L.; Huang, Y. Y.; Hua, W. B.; Wang, Y.; Liu, R.; Gu, Q. F.; Indris, S.; Chou, S. L.; Huang, Y. H. et al. A hydrostable cathode material based on the layered P2@P3 composite that shows redox behavior for copper in high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 1412-1416.
[12]
Chen, J.; Li, L. J.; Wu, L.; Yao, Q.; Yang, H. P.; Liu, Z. S.; Xia, L. F.; Chen, Z. Y.; Duan, J. F.; Zhong, S. K. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. J. Power Sources 2018, 406, 110-117.
[13]
Zhang, K.; Park, M.; Zhang, J.; Lee, G. H.; Shin, J.; Kang, Y. M. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 2017, 10, 4337-4350.
[14]
Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578-14583.
[15]
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
[16]
Chen, X. Q.; Zhu, Y. M.; Li, B; Hong, P. B.; Luo, X. Y.; Zhong, X. X.; Xing, L. D.; Li, W. S. Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery. Electrochim. Acta 2017, 224, 251-259.
[17]
Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14-24.
[18]
Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601057.
[19]
Wu, C.; Zhu, Y.; Ding, M.; Jia, C. K.; Zhang, K. L. Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochim. Acta 2018, 291, 249-255.
[20]
Zhao, Q. L.; Gaddam, R. R.; Yang, D. F.; Strounina, E.; Whittaker, A. K.; Zhao, X. S. Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 2018, 265, 702-708.
[21]
Li, D. H.; Yang, D. J.; Yang, X. F.; Wang, Y.; Guo, Z. Q.; Xia, Y. Z.; Sun, S. L.; Guo, S. J. Double-helix structure in carrageenan-metal hydrogels: A general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem., Int. Ed. 2016, 55, 15925-15928.
[22]
Cai, X.; Lin, H. B.; Zeng, X. W.; Chen, X. Q.; Xia, P.; Luo, X. Y.; Zhong, X. X.; Li, X. P.; Li, W. S. Facile synthesis of porous iron oxide rods coated with carbon as anode of high energy density lithium ion battery. Electrochim. Acta 2016, 191, 767-775.
[23]
Zhu, J. X.; Tang, C. J.; Zhuang, Z. C.; Shi, C. W.; Li, N. R.; Zhou, L.; Mai, L. Q. Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces 2017, 9, 24584-24590.
[24]
Li, X. M.; Feng, Z. X.; Zai, J. T.; Ma, Z. F.; Qian, X. F. Incorporation of Co into MoS2/graphene nanocomposites: One effective way to enhance the cycling stability of Li/Na storage. J. Power Sources 2018, 373, 103-109.
[25]
Cherian, C. T.; Reddy, M. V.; Haur, S. C.; Chowdari, B. V. R. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 918-923.
[26]
Li, M.; Xu, S. H.; Cherry, C.; Zhu, Y. P.; Wu, D. J.; Zhang, C.; Zhang, X. L.; Huang, R.; Qi, R. J.; Wang, L. W. et al. Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. J. Mater. Chem. A 2015, 3, 13776-13785.
[27]
Yu, H.; Guan, C.; Rui, X. H.; Ouyang, B.; Yadian, B. L.; Huang, Y. Z.; Zhang, H.; Hoster, H. E.; Fan, H. J.; Yan, Q. Y. Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale 2014, 6, 10556-10561.
[28]
Yao, J. Y.; Gong, Y. J.; Yang, S. B.; Xiao, P.; Zhang, Y. H.; Keyshar, K.; Ye, G. L.; Ozden, S.; Vajtai, R.; Ajayan, P. M. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20414-20422.
[29]
Zhang, L. H.; Zhu, S. Q.; Cao, H.; Hou, L. R.; Yuan, C. Z. Hierarchical porous ZnMn2O4 hollow nanotubes with enhanced lithium storage toward lithium-ion batteries. Chemistry 2015, 21, 10771-10777.
[30]
Chen, X. Q.; Zhang, Y. M.; Lin, H. B.; Xia, P.; Cai, X.; Li, X. G.; Li, X. P.; Li, W. S. Porous ZnMn2O4 nanospheres: Facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J. Power Sources 2016, 312, 137-145.
[31]
Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745-748.
[32]
Yu, L.; Guan, B. Y.; Xiao, W.; Lou, X. W. D. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 2015, 5, 1500981.
[33]
Yang, D. F.; Zhao, Q. L.; Huang, L. Q.; Xu, B. H.; Kumar, N. A.; Zhao, X. S. Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J. Mater. Chem. A 2018, 6, 14146-14154.
[34]
Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592-4597.
[35]
Saravanakumar, B.; Wang, X. S.; Zhang, W. G.; Xing, L. D.; Li, W. S. Holey two dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem. Eng. J. 2019, 373, 547-555.
[36]
Wang, X. J.; Cao, K. Z.; Wang, Y. J.; Jiao, L. F. Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries. Small 2017, 13, 1700873.
[37]
Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152-2156.
[38]
Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. Acs Nano 2011, 5, 4720-4728.
[39]
Tu, F. Z.; Han, Y.; Du, Y. C.; Ge, X. F.; Weng, W. S.; Zhou, X. S.; Bao, J. C. Hierarchical nanospheres constructed by ultrathin MoS2 nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 2112-2119.
[40]
Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 2018, 6, 10813-10824.
[41]
Li, X. M.; Zai, J. T.; Xiang, S. J.; Liu, Y. Y.; He, X. B.; Xu, Z. Y.; Wang, K. X.; Ma, Z. F.; Qian, X. F. Regeneration of metal sulfides in the delithiation process: The key to cyclic stability. Adv. Energy Mater. 2016, 6, 1601056.
[42]
Tan, Y. B.; Liang, M.; Lou, P. L.; Cui, Z. H.; Guo, X. X.; Sun, W. W.; Yu, X. B. In situ fabrication of CoS and NiS nanomaterials anchored on reduced graphene oxide for reversible lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 14488-14493.
[43]
Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.
[44]
Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H.; Zhao, B.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757-1763.
[45]
Li, X. M.; Qian, T. Y.; Zai, J. T.; He, K.; Feng, Z. X.; Qian, X. F. Co stabilized metallic 1Td MoS2 monolayers: Bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Mater. Today Energy 2018, 7, 10-17.
[46]
Zhu, Y. Y.; Ramasse, Q. M.; Brorson, M.; Moses, P. G.; Hansen, L. P.; Kisielowski, C. F.; Helveg, S. Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity. Angew. Chem., Int. Ed. 2014, 53, 10723-10727.
[47]
Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752-4759.
[48]
Yang, X. J.; Sun, H. M.; Zan, P.; Zhao, L. J.; Lian, J. S. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J. Mater. Chem. A 2016, 4, 18857-18867.
[49]
Liao, Y. Q.; Huang, Y. L.; Shu, D.; Zhong, Y. Y.; Hao, J. N.; He, C.; Zhong, J.; Song, X. N. Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim. Acta 2016, 194, 136-142.
[50]
Yang, J.; Xuan, H. C.; Yang, G. H.; Liang, T.; Han, X. K.; Gao, J. H.; Xu, Y. K.; Xie, Z. G.; Han, P. D.; Wang, D. H. et al. Formation of a flower-like Co-Mo-S on reduced graphene oxide composite on nickel foam with enhanced electrochemical capacitive properties. ChemElectroChem 2018, 5, 3748-3756.
[51]
Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710-12715.
[52]
Wu, Y. Z.; Meng, J. S.; Li, Q.; Niu, C. J.; Wang, X. P.; Yang, W.; Li, W.; Mai, L. Q. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 2017, 10, 2364-2376.
[53]
Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494-502.
[54]
Chen, R. J.; Zhao, T.; Wu, W. P.; Wu, F.; Li, L.; Qian, J.; Xu, R.; Wu, H. M.; Albishri, H. M.; Al-Bogami, A. S. et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014, 14, 5899-5904.
[55]
Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.
Nano Research
Pages 188-195
Cite this article:
Liao Y, Wu C, Zhong Y, et al. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Research, 2020, 13(1): 188-195. https://doi.org/10.1007/s12274-019-2594-2
Topics:

838

Views

32

Crossref

N/A

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 11 August 2019
Revised: 16 October 2019
Accepted: 06 November 2019
Published: 02 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return