AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly conductive dodecaborate/MXene composites for high performance supercapacitors

Zhenxing Li1( )Chang Ma1Yangyang Wen1Zhiting Wei1Xiaofei Xing1Junmei Chu1Chengcheng Yu1Kaili Wang2Zhao-Kui Wang2( )
Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing 102249, China
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

With the increasingly prominent energy and environmental issues, the supercapacitors, as a highly efficient and clean energy conversion and storage devices, meet the requirements well. However, it is still a challenge to enhance the capacitance and energy density of supercapacitors. A novel and highly conductive dodecaborate/MXene composites have been designed for high performance supercapacitors. The surface charge property of MXene was modified by a simple ultrasonic treatment with ammonium ion, and the dodecaborate ion can be inserted into the inner surface of MXene by electrostatic adsorption. Due to the unique icosahedral cage conjugate structure formed by the B-B bond and the highly delocalized three-dimensional π bond structure of the electrons, the negative charge is delocalied on the whole dodecaborate ion, which reduces the ability to bind to cations. Therefore, the cations can move easily, and the dodecaborate can act as a "lubricant" for ion diffusion between the MXene layers, which significantly improves the ion transfer rate of supercapacitors. The dodecaborate/MXene composites can achieve an extremely high specific capacitance of 366 F·g-1 at a scan rate of 2 mV·s-1, which is more than eight times higher than that of MXene (43 F·s-1) at the same scan rate. Our finding provides a novel route on the fabrication of the high performance supercapacitors.

Electronic Supplementary Material

Download File(s)
12274_2019_2597_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.
[2]
Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209-218.
[3]
Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem.—Eur. J. 2015, 21, 6157-6164.
[4]
Anasori, B.; Lukatskaya, M. R.; Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[5]
Zhang, X.; Zhang, Z. H.; Zhou, Z. MXene-based materials for electrochemical energy storage. J. Energy Chem. 2018, 27, 73-85.
[6]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[7]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[8]
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[9]
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322-1331.
[10]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78-81.
[11]
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502-1505.
[12]
Dall’Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118-122.
[13]
Hu, M. M.; Li, Z. J.; Zhang, H.; Hu, T.; Zhang, C.; Wu, Z.; Wang, X. H. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem. Commun. 2015, 51, 13531-13533.
[14]
Scholes, D. T.; Yee, P. Y.; Lindemuth, J. R.; Kang, H.; Onorato, J.; Ghosh, R.; Luscombe, C. K.; Spano, F. C.; Tolbert, S. H.; Schwartz, B. J. The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films. Adv. Funct. Mater. 2017, 27, 1702654.
[15]
Zhao, C. J.; Wang, Q.; Zhang, H.; Passerini, S.; Qian, X. Z. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 15661-15667.
[16]
Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339-345.
[17]
Pitochelli, A. R.; Hawthorne, F. M. The isolation of the icosahedral B12H122- ion. Am. Chem. Soc. 1960, 82, 3228-3229.
[18]
Spokoyny, A. M. New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure Appl. Chem. 2013, 85, 903-919.
[19]
Sivaev, I. B.; Sjöberg, S.; Bregadze, V. I.; Gabel, D. Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2-. Tetrahedron Lett. 1999, 40, 3451-3454.
[20]
Hawthorne, M. F.; Pushechnikov, A. Polyhedral borane derivatives: Unique and versatile structural motifs. Pure Appl. Chem. 2012, 84, 2279-2288.
[21]
Miller, H. C.; Miller, N. E.; Muetterties, E. L. Chemistry of boranes. XX. syntheses of polyhedral boranes. Inorg. Chem. 1964, 3, 1456-1463.
[22]
Geis, V.; Guttsche, K.; Knapp, C.; Scherer, H.; Uzun, R. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2-. Dalton Trans. 2009, 2687-2694.
[23]
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M. Q.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017, 38, 368-376.
[24]
Melánová, K.; Holub, J.; Hynek, J.; Fanfrlík, J.; Beneš, L.; Kutálek, P.; Krejčová, A.; Hnyk, D.; Zima, V. Outerly functionalized and non-functionalized boron clusters intercalated into layered hydroxides with different modes of binding: Materials for superacid storage. Dalton Trans. 2018, 47, 11669-11679.
[25]
Rude, L. H.; Filsø, U.; D’Anna, V.; Spyratou, A.; Richter, B.; Hino, S.; Zavorotynska, O.; Baricco, M.; Sørby, M. H.; Hauback, B. C. et al. Hydrogen-fluorine exchange in NaBH4-NaBF4. Phys. Chem. Chem. Phys. 2013, 15, 18185-18194.
[26]
Li, Z. Y.; Wang, L. B.; Sun, D. D.; Zhang, Y. D.; Liu, B. Z.; Hu, Q. K.; Zhou, A. G. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 2015, 191, 33-40.
[27]
Udovic, T. J.; Matsuo, M.; Tang, W. S.; Wu, H.; Stavila, V.; Soloninin, A. V.; Skoryunov, R. V.; Babanova, O. A.; Skripov, A. V.; Rush, J. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 2014, 26, 7622-7626.
[28]
Yuan, W. Y.; Cheng, L. F.; An, Y. R.; Wu, H.; Yao, N.; Fan, X. L.; Guo, X. H. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 8976-8982.
[29]
Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.
[30]
Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. F.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578-3586.
[31]
Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314-5323.
[32]
Oñate, J. I.; Garcia, A.; Bellido, V.; Viviente, J. L. Deposition of hydrogenated B-C thin films and their mechanical and chemical characterization. Surf. Coat. Technol. 1991, 49, 548-553.
[33]
Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L. The nature of hydrogen in X-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A 1996, 14, 1314-1320.
[34]
Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374-2381.
[35]
Hu, M. M.; Li, Z. J.; Hu, T.; Zhu, S. H.; Zhang, C.; Wang, X. H. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 2016, 10, 11344-11350.
[36]
Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880-8890.
[37]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597-1614.
[38]
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
Nano Research
Pages 196-202
Cite this article:
Li Z, Ma C, Wen Y, et al. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Research, 2020, 13(1): 196-202. https://doi.org/10.1007/s12274-019-2597-z
Topics:

735

Views

58

Crossref

N/A

Web of Science

57

Scopus

7

CSCD

Altmetrics

Received: 03 August 2019
Revised: 17 October 2019
Accepted: 05 December 2019
Published: 18 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return