AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

(Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light

Nina Jiang1,3,§( )Danyang Li1,§Lili Liang1,§Qing Xu1Lei Shao2Shi-Bin Wang1,3Aizheng Chen1,3Jianfang Wang2( )
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Country Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China

§ Nina Jiang, Danyang Li, and Lili Liang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We describe a route to the preparation of (metal yolk)/(porous ceria shell) nanostructures through the heterogeneous growth of ceria on porous metal nanoparticles followed by the calcination-induced shrinkage of the nanoparticles. The approach allows for the control of the ceria shell thickness, the metal yolk composition and size, which is difficult to realize through common templating approaches. The yolk/shell nanostructures with monometallic Pt and bimetallic PtAg yolks featuring plasmon-induced broadband light absorption in the visible region are rationally designed and constructed. The superior photocatalytic activities of the obtained nanostructures are demonstrated by the selective oxidation of benzyl alcohol under visible light. The excellent activities are ascribed to the synergistic effects of the metal yolk and the ceria shell on the light absorption, electron-hole separation and efficient mass transfer. Our synthesis of the (metal yolk)/(porous ceria shell) nanostructures points out a way to the creation of sophisticated heteronanostructures for high-performance photocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2019_2599_MOESM1_ESM.pdf (3.4 MB)

References

[1]
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
[2]
Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-576.
[3]
Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69-72.
[4]
Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274-5309.
[5]
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.
[6]
Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927-2954.
[7]
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-8162.
[8]
Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. J. Am. Chem. Soc. 2015, 137, 9324-9332.
[9]
Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114-1117.
[10]
Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. M. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497-8508.
[11]
Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J. M.; Serrano, D. P.; Durrant, J. R.; de la Peña O’Shea, V. A. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 2018, 9, 4986.
[12]
Nguyen, C. C.; Vu, N. N.; Do, T. O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. J. Mater. Chem. A 2015, 3, 18345-18359.
[13]
Li, A.; Zhu, W. J.; Li, C. C.; Wang, T.; Gong, J. L. Rational design of yolk-shell nanostructures for photocatalysis. Chem. Soc. Rev. 2019, 48, 1874-1907.
[14]
Chen, C.; Fang, X. L.; Wu, B. H.; Huang, L. J.; Zheng, N. F. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2. ChemCatChem 2012, 4, 1578-1586.
[15]
Tu, W. G.; Zhou, Y.; Li, H. J.; Li, P.; Zou, Z. G. Au@TiO2 yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 2015, 7, 14232-14236.
[16]
Yue, Q.; Li, J. L.; Zhang, Y.; Cheng, X. W.; Chen, X.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 2017, 139, 15486-15493.
[17]
Feng, J. W.; Liu, J.; Cheng, X. Y.; Liu, J. J.; Xu, M.; Zhang, J. T. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk-shell nanocrystals and their visible light photocatalytic applications. Adv. Sci. 2018, 5, 1700376.
[18]
Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892-1899.
[19]
Wu, X. J.; Xu, D. S. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 2009, 131, 2774-2775.
[20]
Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789-19873.
[21]
Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588-4592.
[22]
Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833-838.
[23]
Zorić, I.; Zäch, M.; Kasemo, B.; Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 2011, 5, 2535-2546.
[24]
Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core- shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914-8922.
[25]
Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473-482.
[26]
Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058-2062.
[27]
Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000-1005.
[28]
Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc. 2019, 141, 5083-5086.
[29]
Jia, H. L.; Zhu, X. M.; Jiang, R. B.; Wang, J. F. Aerosol-sprayed gold/ceria photocatalyst with superior plasmonic hot electron-enabled visible-light activity. ACS Appl. Mater. Interfaces 2017, 9, 2560-2571.
[30]
Mao, M. Y.; Lv, H. Q.; Li, Y. Z.; Yang, Y.; Zeng, M.; Li, N.; Zhao, X. J. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds. ACS Catal. 2016, 6, 418-427.
[31]
Gao, M. M.; Ng, S. W. L.; Chen, L. W.; Hong, M. H.; Ho, G. W. Self-regulating reversible photocatalytic-driven chromism of a cavity enhanced optical field TiO2/CuO nanocomposite. J. Mater. Chem. A 2017, 5, 10909-10916.
[32]
Lee, S. U.; Jung, H.; Wi, D. H.; Hong, J. W.; Sung, J.; Choi, S. I.; Han, S. W. Metal-semiconductor yolk-shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 4068-4078.
[33]
Li, G. L.; Kang, E. T.; Neoh, K. G.; Yang, X. L. Concentric hollow nanospheres of mesoporous silica shell-titania core from combined inorganic and polymer syntheses. Langmuir 2009, 25, 4361-4364.
[34]
Kim, Y.; Torres, D. D.; Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett. 2016, 16, 3399-3407.
[35]
Kim, Y.; Smith, J. G.; Jain, P. K. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 2018, 10, 763-769.
[36]
Iwasaki, M.; Iglesia, E. Mechanistic assessments of NO oxidation turnover rates and active site densities on WO3-promoted CeO2 catalysts. J. Catal. 2016, 342, 84-97.
[37]
Li, B. X.; Zhang, B. S.; Nie, S. B.; Shao, L. Z.; Hu, L. Y. Optimization of plasmon-induced photocatalysis in electrospun Au/CeO2 hybrid nanofibers for selective oxidation of benzyl alcohol. J. Catal. 2017, 348, 256-264.
[38]
Zhang, N.; Fu, X. Z.; Xu, Y. J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J. Mater. Chem. 2011, 21, 8152-8158.
[39]
Chen, B. B.; Li, X. M.; Zheng, R. J.; Chen, R. P.; Sun, X. Bimetallic (Au-Cu core)@(ceria shell) nanotubes for photocatalytic oxidation of benzyl alcohol: Improved reactivity by Cu. J. Mater. Chem. A 2017, 5, 13382-13391.
[40]
Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X. G.; Zhang, H. J. Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv. Mater. 2017, 29, 1700495.
[41]
Cui, Z. Q.; Wang, W. K.; Zhao, C. J.; Chen, C.; Han, M. M.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Spontaneous redox approach to the self-assembly synthesis of Au/CeO2 plasmonic photocatalysts with rich oxygen vacancies for selective photocatalytic conversion of alcohols. ACS Appl. Mater. Interfaces 2018, 10, 31394-31403.
[42]
Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. A simple strategy for fabrication of “plum-pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation. J. Phys. Chem. C 2011, 115, 22901-22909.
[43]
Wang, L.; Yamauchi, Y. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem. -Eur. J. 2011, 17, 8810-8815.
Nano Research
Pages 1354-1362
Cite this article:
Jiang N, Li D, Liang L, et al. (Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light. Nano Research, 2020, 13(5): 1354-1362. https://doi.org/10.1007/s12274-019-2599-x
Topics:

695

Views

17

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 19 September 2019
Revised: 17 November 2019
Accepted: 06 December 2019
Published: 19 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return