AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting

Lu WangTao ZhangJinzhan Su( )Liejin Guo ( )
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

Abstract

Photoelectrochemical (PEC) water splitting using semiconductors offers a promising way to convert renewable solar energy to clean hydrogen fuels. However, due to the sluggish reaction kinetics of water oxidation, significant charge recombination occurred at the photoanode/electrolyte interface and cause decrease of its PEC performance. To reduce the surface recombination, we deposit different transition metal complexes on BiVO4 nanocone arrays by a versatile light driven in-situ two electrode photodeposition approach without applied bias. Conformal cobalt phosphate "Co-Pi" , nickel borate "Ni-Bi" and manganese phosphate "Mn-Pi" complexes were deposited on BiVO4 nanocone arrays to form core-shell structure photoanode, all of which lead to enhanced photoelectrochemical performance. The photocurrent of the Co-Pi/BiVO4 photoanode under front-side illumination for 5 min is increased by 4 folds comparing to that of bare BiVO4 photoanode at 0.6 V vs. RHE, reaching a hole transfer efficiency as high as 94.5% at 1.23 V vs. RHE. The proposed photodeposition strategy is simple and efficient, and can be extended to deposite cocatalyst on other semiconductors with a valence band edge located at a potential more positive than the oxidation potential of transition metal ion in the cocatalyst.

Electronic Supplementary Material

Download File(s)
12274_2019_2605_MOESM1_ESM.pdf (2.5 MB)

References

[1]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[2]
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
[3]
Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511-518.
[4]
Guo, L. J.; Chen, Y. B.; Su, J. Z.; Liu, M. C.; Liu, Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy 2019, 172, 1079-1086.
[5]
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.
[6]
Gür, T. M.; Bent, S. F.; Prinz, F. B. Nanostructuring materials for solar-to-hydrogen conversion. J. Phys. Chem. C 2014, 118, 21301-21315.
[7]
Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.
[8]
Su, J. Z.; Vayssieres, L. A place in the sun for artificial photosynthesis? ACS Energy Lett. 2016, 1, 121-135.
[9]
Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624-4628.
[10]
Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.
[11]
Jo, W. J.; Kang, H. J.; Kong, K. J.; Lee, Y. S.; Park, H.; Lee, Y.; Buonassisi, T.; Gleason, K. K.; Lee, J. S. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl. Acad. Sci. USA 2015, 112, 13774-13778.
[12]
Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321-2337.
[13]
Gao, B.; Wang, T.; Fan, X. L.; Gong, H.; Meng, X. G.; Li, P.; Feng, Y. Y.; Huang, X. L.; He, J. P.; Ye, J. H. Selective deposition of Ag3PO4 on specific facet of BiVO4 nanoplate for enhanced photoelectrochemical performance. Sol. RRL 2018, 2, 1800102.
[14]
Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752-2757.
[15]
Chhetri, M.; Dey, S.; Rao, C. N. R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co-La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition. ACS Energy Lett. 2017, 2, 1062-1069.
[16]
Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712-3719.
[17]
Ding, C. M.; Shi, J. Y.; Wang, D. G.; Wang, Z. J.; Wang, N.; Liu, G. J.; Xiong, F. Q.; Li, C. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys. Chem. Chem. Phys. 2013, 15, 4589-4595.
[18]
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.
[19]
Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.
[20]
Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364-386.
[21]
Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169-7172.
[22]
Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.
[23]
Liu, R.; Lin, Y. J.; Chou, L. Y.; Sheehan, S. W.; He, W. S.; Zhang, F.; Hou, H. J. M.; Wang, D. W. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem., Int. Ed. 2011, 50, 499-502.
[24]
Carroll, G. M.; Zhong, D. K.; Gamelin, D. R. Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes. Energy Environ. Sci. 2015, 8, 577-584.
[25]
Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633-20636.
[26]
Gao, B.; Wang, T.; Fan, X. L.; Gong, H.; Li, P.; Feng, Y. Y.; Huang, X. L.; He, J. P.; Ye, J. H. Enhanced water oxidation reaction kinetics on a BiVO4 photoanode by surface modification with Ni4O4 cubane. J. Mater. Chem. A 2019, 7, 278-288.
[27]
Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028-5034.
[28]
Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370-18377.
[29]
Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561-1569.
[30]
Wang, L.; Su, J. Z.; Guo, L. J. Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Res. 2019, 12, 575-580.
[31]
Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856-861.
[32]
Choi, S. K.; Choi, W.; Park, H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 6499-6507.
[33]
Joya, K. S.; Joya, Y. F.; De Groot, H. J. M. Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3-/CO2 system at near-neutral pH. Adv. Energy Mater. 2014, 4, 1301929.
[34]
Zhang, H. Y.; Tian, W. J.; Li, Y. G.; Sun, H. Q.; Tadé, M. O.; Wang, S. B. A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. J. Mater. Chem. A 2018, 6, 24149-24156.
[35]
Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.
[36]
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
[37]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 2012, 11, 550-557.
Nano Research
Pages 231-237
Cite this article:
Wang L, Zhang T, Su J, et al. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Research, 2020, 13(1): 231-237. https://doi.org/10.1007/s12274-019-2605-3
Topics:

792

Views

16

Crossref

N/A

Web of Science

16

Scopus

4

CSCD

Altmetrics

Received: 27 August 2019
Revised: 12 December 2019
Accepted: 14 December 2019
Published: 27 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return