AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1-xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction

Liang-ai HuangZhishun HeJianfeng GuoShi-en PeiHaibo ShaoJianming Wang( )
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

Abstract

Highly active, durable and inexpensive oxygen evolution reaction (OER) catalysts are crucial for achieving practical and high-efficiency water splitting. Herein, hierarchical interconnected NixCo1-xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method. Compared with pristine NiOOH, the obtained NixCo1-xOOH nanosheet arrays possess larger exposed electrochemical active surface area, faster transfer and collection of electrons and stronger electronic interaction, showing a low overpotential of 350 mV at a current density of 10 mA·cm-2 and a small Tafel slope of 41 mV·dec-1 in basic solutions, with the OER performance superior to pristine NiOOH and most Ni-based catalysts. Furthermore, the NixCo1-xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm-2 for 24 hours, which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate. Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2019_2607_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196-7225.
[2]
Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[3]
Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.
[4]
He, W. H.; Yang, Y.; Wang, L. R.; Yang, J. J.; Xiang, X.; Yan, D. P.; Li, F. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. ChemSusChem 2015, 8, 1568-1576.
[5]
Ye, W.; Fang, X. Y.; Chen, X. B.; Yan, D. P. A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 2018, 10, 19484-19491.
[6]
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[7]
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[8]
Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 2018, 11, 1294-1300.
[9]
Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
[10]
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
[11]
Swierk, J. R.; Mallouk, T. E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 2013, 42, 2357-2387.
[12]
Chen, B.; Zhang, Z.; Kim, S.; Lee, S.; Lee, J.; Kim, W.; Yong, K. Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 44518-44526.
[13]
Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167-178.
[14]
Shen, J. Y.; Wang, M.; Zhao, L.; Jiang, J.; Liu, H.; Liu, J. X Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 8786-8796.
[15]
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Horn, Y. S. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
[16]
Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.
[17]
Liu, G. G.; Li, P.; Zhao, G. X.; Wang, X.; Kong, J. T.; Liu, H. M.; Zhang, H. B.; Chang, K.; Meng, X. G.; Kako, T. et al. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 9128-9136.
[18]
Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123-129.
[19]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[20]
Tkalych, A. J.; Martirez, J. M. P.; Carter, E. A. Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). Phys. Chem. Chem. Phys. 2018, 20, 19525-19531.
[21]
Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 2016, 120, 18999-19010.
[22]
Zaffran, J.; Toroker, M. C. Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput. 2016, 12, 3807-3812.
[23]
Shao, Y. B.; Zheng, M. Y.; Cai, M. M.; He, L.; Xu, C. L. Improved electrocatalytic performance of core-shell NiCo/NiCoOx with amorphous FeOOH for oxygen-evolution reaction. Electrochim. Acta 2017, 257, 1-8.
[24]
Jin, Y. S.; Huang, S. L.; Yue, X.; Shu, C.; Shen, P. K. Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 12140-12145.
[25]
Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
[26]
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[27]
Liang, Y.; Yu, Y. F.; Huang, Y.; Shi, Y. M.; Zhang, B. Adjusting the electronic structure by Ni incorporation: A generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. J. Mater. Chem. A 2017, 5, 13336-13340.
[28]
Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater, in press, .
[29]
Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687-693.
[30]
Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano 2014, 8, 9518-9523.
[31]
Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.
[32]
Xu, Y. Q.; Hao, Y. C.; Zhang, G. X.; Lu, Z. Y.; Han, S.; Li, Y. P.; Sun, X. M. Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Adv. 2015, 5, 55131-55135.
[33]
Zhu, S. S.; Zhang, P. P.; Chang, L.; Zhong, Y.; Wang, K.; Shao, H. B.; Wang, J. M.; Zhang, J. Q.; Cao, C. N. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance. Phys. Chem. Chem. Phys. 2016, 18, 8529-8536.
[34]
Zhang, L. Y.; Zhong, Y.; He, Z. S.; Wang, J. M.; Xu, J.; Cai, J.; Zhang, N.; Zhou, H.; Fan, H. Q.; Shao, H. B. et al. Surfactant-assisted photochemical deposition of three-dimensional nanoporous nickel oxyhydroxide films and their energy storage and conversion properties. J. Mater. Chem. A 2013, 1, 4277-4285.
[35]
Shao, F.; Sun, J.; Gao, L.; Yang, S. W.; Luo, J. Q. Growth of various TiO2 nanostructures for dye-sensitized solar cells. J. Phys. Chem. C 2011, 115, 1819-1823.
[36]
Zhu, Z. J.; Liu, X. Y.; Ye, Z. N.; Zhang, J. Q.; Cao, F. H.; Zhang, J. X. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential. Sens. Actuators B Chem. 2018, 255, 1974-1982.
[37]
Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26, 3148-3155.
[38]
Gao, T. T.; Jin, Z. Y.; Liao, M.; Xiao, J. L.; Yuan, H. Y.; Xiao, D. A trimetallic V-Co-Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 17763-17770.
[39]
Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 2019, 4, 285-292.
[40]
Bledowski, M.; Wang, L. D.; Neubert, S.; Mitoraj, D.; Beranek, R. Improving the performance of hybrid photoanodes for water splitting by photodeposition of iridium oxide nanoparticles. J. Phys. Chem. C 2014, 118, 18951-18961.
[41]
Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 2010, 20, 1099-1107.
[42]
Park, H.; Kim, K. Y.; Choi, W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B 2002, 106, 4775-4781.
[43]
Zhang, L. Y.; Xu, L.; Wang, J. M.; Shao, H. B.; Fan, Y. Q.; Zhang, J. Q. UV-induced oxidative energy storage behavior of a novel nanostructured TiO2-Ni(OH)2 bilayer system. J. Phys. Chem. C 2011, 115, 18027-18034.
[44]
Li, Y.; Hu, L. S.; Zheng, W. R.; Peng, X.; Liu, M. J.; Chu, P. K.; Lee, L. Y. S. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy 2018, 52, 360-368.
[45]
Steimecke, M.; Seiffarth, G.; Bron, M. In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup. Anal. Chem. 2017, 89, 10679-10686.
[46]
Yeo, B. S.; Bell, A. T. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 2012, 116, 8394-8400.
[47]
Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
[48]
Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24, 103-110.
[49]
Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722-8727.
[50]
Han, X. T.; Yu, C.; Zhou, S.; Zhao, C. T.; Huang, H. W.; Yang, J.; Liu, Z. B.; Zhao, J. J.; Qiu, J. S. Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 2017, 7, 1602148.
[51]
Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.
[52]
Zhu, S. S.; Huang, L. A.; He, Z. S.; Wang, K.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Investigation of oxygen vacancies in Fe2O3/CoOx composite films for boosting electrocatalytic oxygen evolution performance stably. J. Electroanal. Chem. 2018, 827, 42-50.
[53]
Chen, Z.; Cai, L.; Yang, X. F.; Kronawitter, C.; Guo, L. J.; Shen, S. H.; Koel, B. E. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal. 2018, 8, 1238-1247.
[54]
Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319-1324.
[55]
Levine, S.; Smith, A. L. Theory of the differential capacity of the oxide/aqueous electrolyte interface. Discuss. Faraday Soc. 1971, 52, 290-301.
[56]
Wu, L. K.; Wu, W. Y.; Xia, J.; Cao, H. Z.; Hou, G. Y.; Tang, Y. P.; Zheng, G. Q. Nanostructured NiCo@NiCoOx core-shell layer as efficient and robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2017, 254, 337-347.
[57]
Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897-4900.
[58]
Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.
[59]
Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594-12599.
[60]
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.
Nano Research
Pages 246-254
Cite this article:
Huang L-a, He Z, Guo J, et al. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1-xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Research, 2020, 13(1): 246-254. https://doi.org/10.1007/s12274-019-2607-1
Topics:

735

Views

31

Crossref

N/A

Web of Science

30

Scopus

1

CSCD

Altmetrics

Received: 13 September 2019
Revised: 23 November 2019
Accepted: 14 December 2019
Published: 02 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return