AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation

Xing ZhaoXiang-Jun ZhaLi-Sheng TangJun-Hong PuKai KeRui-Ying BaoZheng-ying LiuMing-Bo YangWei Yang ( )
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
Show Author Information

Graphical Abstract

Abstract

As a renewable and environment-friendly technology for seawater desalination and wastewater purification, solar energy triggered steam generation is attractive to address the long-standing global water scarcity issues. However, practical utilization of solar energy for steam generation is severely restricted by the complex synthesis, low energy conversion efficiency, insufficient solar spectrum absorption and water extraction capability of state-of-the-art technologies. Here, for the first time, we report a facile strategy to realize hydrogen bond induced self-assembly of a polydopamine (PDA)@MXene microsphere photothermal layer for synergistically achieving wide-spectrum and highly efficient solar absorption capability (~ 96% in a wide solar spectrum range of 250-1,500 nm wavelength). Moreover, such a system renders fast water transport and vapor escaping due to the intrinsically hydrophilic nature of both MXene and PDA, as well as the interspacing between core-shell microspheres. The solar-to-vapor conversion efficiencies under the solar illumination of 1 sun and 4 sun are as high as 85.2% and 93.6%, respectively. Besides, the PDA@MXene photothermal layer renders the system durable mechanical properties, allowing producing clean water from seawater with the salt rejection rate beyond 99%. Furthermore, stable light absorption performance can be achieved and well maintained due to the formation of ternary TiO2/C/MXene complex caused by oxidative degradation of MXene. Therefore, this work proposes an attractive MXene-assisted strategy for fabricating high performance photothermal composites for advanced solar-driven seawater desalination applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2608_MOESM1_ESM.pdf (6 MB)

References

[1]
Cheng, H. F.; Hu, Y. A.; Zhao, J. F. Meeting China’s water shortage crisis: Current practices and challenges. Environ. Sci. Technol. 2009, 43, 240-244.
[2]
Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712-717.
[3]
Zhang, S. N.; Huang, J. Y.; Chen, Z.; Lai, Y. K. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 2017, 13, 1602992.
[4]
Deng, Z. Y.; Zhou, J. H.; Miao, L.; Liu, C. Y.; Peng, Y.; Sun, L. X.; Tanemura, S. The emergence of solar thermal utilization: Solar-driven steam generation. J. Mater. Chem. A 2017, 5, 7691-7709.
[5]
Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302-4307.
[6]
Wang, X. Z.; He, Y. R.; Cheng, G.; Shi, L.; Liu, X.; Zhu, J. Q. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers. Manage. 2016, 130, 176-183.
[7]
Zhang, C. B.; Yan, C.; Xue, Z. J.; Yu, W.; Xie, Y. D.; Wang, T. Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 2016, 12, 5320-5328.
[8]
Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.
[9]
Sajadi, S. M.; Farokhnia, N.; Irajizad, P.; Hasnain, M.; Ghasemi, H. Flexible artificially-networked structure for ambient/high pressure solar steam generation. J. Mater. Chem. A 2016, 4, 4700-4705.
[10]
Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985-1992.
[11]
Li, W. G.; Tekell, M. C.; Huang, Y.; Bertelsmann, K.; Lau, M.; Fan, D. L. Synergistic high-rate solar steaming and mercury removal with MoS2/C @ polyurethane composite sponges. Adv. Energy Mater. 2018, 8, 1802108.
[12]
Ma, X.; Fang, W. Z.; Guo, Y.; Li, Z. Y.; Chen, D. K.; Ying, W.; Xu, Z.; Gao, C.; Peng, X. S. Hierarchical porous SWCNT stringed carbon polyhedrons and PSS threaded MOF bilayer membrane for efficient solar vapor generation. Small 2019, 15, 1900354.
[13]
Li, Z. T.; Wang, C. B.; Su, J. B.; Ling, S.; Wang, W.; An, M. Fast-growing field of interfacial solar steam generation: Evolutional materials, engineered architectures, and synergistic applications. Solar RRL 2019, 3, 1800206.
[14]
Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 2018, 5, 1078-1089.
[15]
Yang, J. L.; Pang, Y. S.; Huang, W. X.; Shaw, S. K.; Schiffbauer, J.; Pillers, M. A.; Mu, X.; Luo, S. R.; Zhang, T.; Huang, Y. J. et al. Functionalized graphene enables highly efficient solar thermal steam generation. ACS Nano 2017, 11, 5510-5518.
[16]
Wang, G.; Fu, Y.; Ma, X. F.; Pi, W. B.; Liu, D. W.; Wang, X. B. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon 2017, 114, 117-124.
[17]
Wang, Z. Z.; Ye, Q. X.; Liang, X. B.; Xu, J. L.; Chang, C.; Song, C. Y.; Shang, W.; Wu, J. B.; Tao, P.; Deng, T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. J. Mater. Chem. A 2017, 5, 16359-16368.
[18]
Qiao, P. Z.; Wu, J. X.; Li, H. Z.; Xu, Y. C.; Ren, L. P.; Lin, K.; Zhou, W. Plasmon ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 2019, 11, 7066-7073.
[19]
Yang, Y. B.; Yang, X. D.; Fu, L. N.; Zou, M. C.; Cao, A. Y.; Du, Y. P.; Yuan, Q.; Yan, C. H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Lett. 2018, 3, 1165-1171.
[20]
Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.
[21]
Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768-2774.
[22]
Xu, J. J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z. L.; Huang, F. Q. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy 2018, 53, 425-431.
[23]
Li, T. T.; Fang, Q. L.; Lin, H. B.; Liu, F. Enhancing solar steam generation through manipulating the heterostructure of PVDF membranes with reduced reflection and conduction. J. Mater. Chem. A 2019, 7, 17505-17515.
[24]
Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854-3863.
[25]
Yang, Y. W.; Zhao, H. Y.; Yin, Z. Y.; Zhao, J. Q.; Yin, X. T.; Li, N.; Yin, D. D.; Li, Y. N.; Lei, B.; Du, Y. P. et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater. Horiz. 2018, 5, 1143-1150.
[26]
Liu, H. W.; Chen, C. J.; Wen, H.; Guo, R. X.; Williams, N. A.; Wang, B. D.; Chen, F. J.; Hu, L. B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839-18846.
[27]
Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.
[28]
Shi, L.; Shi, Y.; Zhuo, S. F.; Zhang, C. L.; Aldrees, Y.; Aleid, S.; Wang, P. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation. Nano Energy 2019, 60, 222-230.
[29]
Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.
[30]
Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087-5093.
[31]
Jiang, Q. S.; Tian, L. M.; Liu, K. K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 2016, 28, 9400-9407.
[32]
Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.
[33]
Yang, Y.; Zhao, R. Q.; Zhang, T. F.; Zhao, K.; Xiao, P. S.; Ma, Y. F.; Ajayan, P. M.; Shi, G. Q.; Chen, Y. S. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 2018, 12, 829-835.
[34]
Lou, J. W.; Liu, Y.; Wang, Z. Y.; Zhao, D. W.; Song, C. Y.; Wu, J. B.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2016, 8, 14628-14636.
[35]
Shao, Y.; Jiang, Z. P.; Zhang, Y. J.; Wang, T. Z.; Zhao, P.; Zhang, Z.; Yuan, J. Y.; Wang, H. All-poly(ionic liquid) membrane-derived porous carbon membranes: Scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 2018, 12, 11704-11710.
[36]
Mu, P.; Zhang, Z.; Bai, W.; He, J. X.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 2019, 9, 1802158.
[37]
Gong, F.; Li, H.; Wang, W. B.; Huang, J. G.; Xia, D. W.; Liao, J. X.; Wu, M. Q.; Papavassiliou, D. V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322-330.
[38]
Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Chen, F. F.; Yang, R. L. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 2018, 14, 1803387.
[39]
Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620-14628.
[40]
Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.
[41]
Xue, G. B.; Liu, K.; Chen, Q.; Yang, P. H.; Li, J.; Ding, T. P.; Duan, J. J.; Qi, B.; Zhou, J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 15052-15057.
[42]
Zielinski, M. S.; Choi, J. W.; La Grange, T.; Modestino, M.; Hashemi, S. M. H.; Pu, Y.; Birkhold, S.; Hubbell, J. A.; Psaltis, D. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 2016, 16, 2159-2167.
[43]
Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031-1041.
[44]
d’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J. Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 2014, 47, 3541-3550.
[45]
Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353-1359.
[46]
Zeng, X. W.; Luo, M. M.; Liu, G.; Wang, X. S.; Tao, W.; Lin, Y. X.; Ji, X. Y.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 2018, 5, 1800510.
[47]
Wu, X.; Wu, L. M.; Tan, J.; Chen, G. Y.; Owens, G.; Xu, H. L. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. J. Mater. Chem. A 2018, 6, 12267-12274.
[48]
Jiang, Q. S.; Gholami Derami, H.; Ghim, D.; Cao, S. S.; Jun, Y. S.; Singamaneni, S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 2017, 5, 18397-18402.
[49]
Wu, X. H.; Jiang, Q. S.; Ghim, D.; Singamaneni, S.; Jun, Y. S. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 2018, 6, 18799-18807.
[50]
Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841-864.
[51]
Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149-4168.
[52]
Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471-487.
[53]
He, P.; Cao, M. S.; Shu, J. C.; Cai, Y. Z.; Wang, X. X.; Zhao, Q. L.; Yuan, J. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 2019, 11, 12535-12543.
[54]
Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265-1302.
[55]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78-81.
[56]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[57]
Zhao, Q.; Zhu, Q. Z.; Miao, J. W.; Zhang, P.; Xu, B. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium- sulfur batteries. Nanoscale 2019, 11, 8442-8448.
[58]
Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752-3759.
[59]
Zhao, J. Q.; Yang, Y. W.; Yang, C. H.; Tian, Y. P.; Han, Y.; Liu, J.; Yin, X. T.; Que, W. Z. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196-16204.
[60]
Wang, Y. C.; Wang, C. Z.; Song, X. J.; Megarajan, S. K.; Jiang, H. Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 2018, 6, 963-971.
[61]
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[62]
Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.
[63]
Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.
[64]
Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.
[65]
Liu, F. H.; Zhao, B. Y.; Wu, W. P.; Yang, H. Y.; Ning, Y. S.; Lai, Y. J.; Bradley, R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Adv. Funct. Mater. 2018, 28, 1803266.
[66]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[67]
Zhao, X.; Zha, X. J.; Pu, J. H.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 2019, 7, 10446-10455.
[68]
Ai, K. L.; Liu, Y. L.; Ruan, C. P.; Lu, L. H.; Lu, G. Q. sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998-1003.
[69]
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057-5115.
[70]
Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. F.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578-3586.
[71]
Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369-3377.
[72]
Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583-4593.
[73]
Tian, J. W.; Zhang, H. X.; Liu, M. Y.; Deng, F. J.; Huang, H. Y.; Wan, Q.; Li, Z.; Wang, K.; He, X. H.; Zhang, X. Y. et al. A bioinspired strategy for surface modification of silica nanoparticles. Appl. Surf. Sci. 2015, 357, 1996-2003.
[74]
Chaudhuri, K.; Alhabeb, M.; Wang, Z. X.; Shalaev, V. M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115-1122.
[75]
Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Luo, W.; Song, J. W.; Hitz, E.; Jia, C.; Zhou, Y. B.; Liu, B. Y. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 2017, 29, 1700981.
[76]
Smith, A. H.; Lopipero, P. A.; Bates, M. N.; Steinmaus, C. M. Arsenic epidemiology and drinking water standards. Science 2002, 296, 2145-2146.
[77]
Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848-4856.
[78]
Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.
[79]
Chae, Y.; Kim, S. J.; Cho, S. Y.; Choi, J.; Maleski, K.; Lee, B. J.; Jung, H. T.; Gogotsi, Y.; Lee, Y.; Ahn, C. W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 2019, 11, 8387-8393.
[80]
Ren, C. E.; Zhao, M. Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 2016, 3, 689-693.
Nano Research
Pages 255-264
Cite this article:
Zhao X, Zha X-J, Tang L-S, et al. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Research, 2020, 13(1): 255-264. https://doi.org/10.1007/s12274-019-2608-0
Topics:
Part of a topical collection:

1252

Views

212

Crossref

N/A

Web of Science

209

Scopus

17

CSCD

Altmetrics

Received: 18 September 2019
Revised: 15 November 2019
Accepted: 14 December 2019
Published: 27 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return