AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction

Xiaolei Yuan1,§Bei Jiang5,§Muhan Cao2,§Congyang Zhang2Xiaozhi Liu3,4Qinghua Zhang3Fenglei Lyu2Lin Gu3,4( )Qiao Zhang2( )
School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

§ Xiaolei Yuan, Bei Jiang, and Muhan Cao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

High-quality Pt-based catalysts are highly desirable for ethanol oxidation reaction (EOR), which is of critical importance for the commercial applications of direct ethanol fuel cells (DEFCs). However, most of the Pt-based catalysts have suffered from high cost and low operation durability. Herein a two-step method has been developed to synthesize porous Pt nanoframes decorated with Bi(OH)3, which show excellent catalytic activity and operation durability in both alkaline and acidic media. For example, the nanoframes show a mass activity of 6.87 A·mgPt-1 in alkaline media, which is 13.5-fold higher than that of commercial Pt/C. More importantly, the catalyst can be reactivated simply, which shows negligible activity loss after running for 180,000 s. Further in situ attenuated total reflection-infrared (ATR-IR) absorption spectroscopy and CO-stripping experiments indicate that surface Bi(OH)3 species can greatly facilitate the formation of adsorbed OH species and subsequently remove carbonaceous poison, resulting in a significantly enhanced stability towards EOR. This work may favor the tailoring of desired electrocatalysts with high activity and durability for future commercial application of DEFCs.

Electronic Supplementary Material

Download File(s)
12274_2019_2609_MOESM1_ESM.pdf (3.3 MB)

References

[1]
Rizo, R.; Arán-Ais, R. M.; Padgett, E.; Muller, D. A.; Lázaro, M. J.; Solla-Gullón, J.; Feliu, J. M.; Pastor, E.; Abruña, H. D. Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2018, 140, 3791-3797.
[2]
Yuan, X. L.; Zhang, Y.; Cao, M. H.; Zhou, T.; Jiang, X. J.; Chen, J. X.; Lyu, F. L.; Xu, Y.; Luo, J.; Zhang, Q. et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019, 19, 4752-4759.
[3]
Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.
[4]
Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.
[5]
Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.
[6]
Beard, K. D.; Borrelli, D.; Cramer, A. M.; Blom, D.; Van Zee, J. W.; Monnier, J. R. Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 2009, 3, 2841-2853.
[7]
Bu, L. Z.; Shao, Q.; Huang, X. Q. Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Sci. China Mater. 2019, 62, 341-350.
[8]
Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044-1060.
[9]
Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z. P.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29, 1604607.
[10]
Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L. M.; Vuković, L.; Král, P.; Bals, S. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017, 358, 514-518.
[11]
Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439-2450.
[12]
Chen, S. P.; Niu, Z. Q.; Xie, C. L.; Gao, M. Y.; Lai, M. L.; Li, M. F.; Yang, P. D. Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts. ACS Nano 2018, 12, 8697-8705.
[13]
Zhang, X. Y.; Lu, W.; Da, J. Y.; Wang, H. T.; Zhao, D. Y.; Webley, P. A. Porous platinum nanowire arrays for direct ethanol fuel cell applications. Chem. Commun. 2009, 195-197.
[14]
Mourdikoudis, S.; Chirea, M.; Altantzis, T.; Pastoriza-Santos, I.; Pérez-Juste, J.; Silva, F.; Bals, S.; Liz-Marzán, L. M. Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale 2013, 5, 4776-4784.
[15]
Seselj, N.; Engelbrekt, C.; Ding, Y.; Hjuler, H. A.; Ulstrup, J.; Zhang, J. D. Tailored electron transfer pathways in Aucore/Ptshell-graphene nanocatalysts for fuel cells. Adv. Energy Mater. 2018, 8, 1702609.
[16]
Dutta, A.; Ouyang, J. Y. Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 2015, 5, 1371-1380.
[17]
Qiu, P. T.; Lian, S. M.; Yang, G.; Yang, S. C. Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10, 1064-1077.
[18]
Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307-1310.
[19]
Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037-5043.
[20]
Wang, K.; Sriphathoorat, R.; Luo, S. P.; Tang, M.; Du, H. Y.; Shen, P. K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425-13430.
[21]
Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.
[22]
Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism. J. Am. Chem. Soc. 2004, 126, 8028-8037.
[23]
Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563, 81-89.
[24]
Wu, F. X.; Zhang, D. T.; Peng, M. H.; Yu, Z. H.; Wang, X. Y.; Guo, G. S.; Sun, Y. G. Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew. Chem., Int. Ed. 2016, 55, 4952-4956.
[25]
Du, W. X.; Yang, G. X.; Wong, E.; Deskins, N. A.; Frenkel, A. I.; Su, D.; Teng, X. W. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 2014, 136, 10862-10865.
[26]
Sarkar, S.; Jana, R.; Vadlamani, H.; Ramani, S.; Mumbaraddi, D.; Peter, S. C. Facile aqueous-phase synthesis of the PtAu/Bi2O3 hybrid catalyst for efficient electro-oxidation of ethanol. ACS Appl. Mater. Interfaces 2017, 9, 15373-15382.
[27]
Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U.; Fuess, H.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem., Int. Ed. 2006, 45, 5315-5319.
[28]
Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325-330.
[29]
Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
[30]
Zhang, B. W.; Jiang, Y. X.; Ren, J.; Qu, X. M.; Xu, G. L.; Sun, S. G. PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation. Electrochim. Acta 2015, 162, 254-262.
[31]
Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.
[32]
Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937-3945.
[33]
Nie, A. M.; Gan, L. Y.; Cheng, Y. C.; Li, Q. Q.; Yuan, Y. F.; Mashayek, F.; Wang, H. T.; Klie, R.; Schwingenschlogl, U.; Shahbazian-Yassar, R. Twin boundary-assisted lithium ion transport. Nano Lett. 2015, 15, 610-615.
[34]
Moriwake, H.; Kuwabara, A.; Fisher, C. A. J.; Huang, R.; Hitosugi, T.; Ikuhara, Y. H.; Oki, H.; Ikuhara, Y. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2. Adv. Mater. 2013, 25, 618-622.
[35]
Ma, C.; Chen, K.; Liang, C. D.; Nan, C. W.; Ishikawa, R.; More, K.; Chi, M. F. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 2014, 7, 1638-1642.
[36]
Lim, B.; Jiang, M. J.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.
[37]
Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.
[38]
Jiang, B.; Li, C. L.; Tang, J.; Takei, T.; Kim, J. H.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 10037-10041.
[39]
Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 2002, 105, 13-19.
[40]
Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058-2068.
[41]
Chen, Q. L.; Cao, Z. M.; Du, G. F.; Kuang, Q.; Huang, J.; Xie, Z. X.; Zheng, L. S. Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 2017, 39, 582-589.
[42]
Kim, H. J.; Ruqia, B.; Kang, M. S.; Lim, S. B.; Choi, R.; Nam, K. M.; Seo, W. S.; Lee, G.; Choi, S. I. Shape-controlled Pt nanocubes directly grown on carbon supports and their electrocatalytic activity toward methanol oxidation. Sci. Bull. 2017, 62, 943-949.
[43]
Zhang, B. W.; He, C. L.; Jiang, Y. X.; Chen, M. H.; Li, Y. Y.; Rao, L.; Sun, S. G. High activity of PtBi intermetallics supported on mesoporous carbon towards HCOOH electro-oxidation. Electrochem. Commun. 2012, 25, 105-108.
[44]
Yuan, X. L.; Jiang, X. J.; Cao, M. H.; Chen, L.; Nie, K. Q.; Zhang, Y.; Xu, Y.; Sun, X. H.; Li, Y. G.; Zhang, Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019, 12, 429-436.
[45]
Kim, Y.; Noh, Y.; Lim, E. J.; Lee, S.; Choi, S. M.; Kim, W. B. Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2014, 2, 6976-6986.
[46]
Tripković, A. V.; Popović, K. D.; Stevanović, R. M.; Socha, R.; Kowal, A. Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem. Commun. 2006, 8, 1492-1498.
[47]
Su, Y. Z.; Xiao, K.; Li, N.; Liu, Z. Q.; Qiao, S. Z. Amorphous Ni(OH)2@three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 13845-13853.
[48]
Favaro, M.; Yang, J. H.; Nappini, S.; Magnano, E.; Toma, F. M.; Crumlin, E. J.; Yano, J.; Sharp, I. D. Understanding the oxygen evolution reaction mechanism on CoOx using Operando ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 2017, 139, 8960-8970.
[49]
Tripković, A. V.; Popović, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Marković, N. M. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim. Acta 2002, 47, 3707-3714.
[50]
Simões, M.; Baranton, S.; Coutanceau, C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 2010, 56, 580-591.
[51]
Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765-771.
[52]
Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal. 2014, 4, 798-803.
[53]
Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.
[54]
Xu, Q. F.; Chen, W. L.; Yan, Y. C.; Wu, Z. M.; Jiang, Y.; Li, J. J.; Bian, T.; Zhang, H.; Wu, J. B.; Yang, D. R. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction. Sci. Bull. 2018, 63, 494-501.
[55]
Fan, H.; Huang, X.; Shang, L.; Cao, Y. T.; Zhao, Y. F.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew. Chem., Int. Ed. 2016, 55, 2167-2170.
[56]
Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Mechanism of CO oxidation on Pt(111) in alkaline media. J. Phys. Chem. B 2006, 110, 9545-9555.
[57]
Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai, W. B. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study. J. Am. Chem. Soc. 2011, 133, 14876-14879.
Nano Research
Pages 265-272
Cite this article:
Yuan X, Jiang B, Cao M, et al. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Research, 2020, 13(1): 265-272. https://doi.org/10.1007/s12274-019-2609-z
Topics:

749

Views

51

Crossref

N/A

Web of Science

52

Scopus

4

CSCD

Altmetrics

Received: 27 September 2019
Revised: 06 December 2019
Accepted: 14 December 2019
Published: 03 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return