AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment

Mi Se Chang1,2Min-Sun Jang1Sangsun Yang1Jihun Yu1Taehoon Kim3Sedong Kim4Hyomin Jeong4Chong Rae Park2( )Jae Won Jeong1( )
Powder/Ceramic Research Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon 51508, Republic of Korea
Research Institute of Advanced Materials and Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
Composites Research Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon 51508, Republic of Korea
Dept. of Energy and Mech. Eng., Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong 53064, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Boron nitride nanotubes (BNNTs) show exceptional physical properties including high mechanical strength and thermal conductivity; however, their applications have been restricted due to limited dispersibility in processing solvents. Here, a novel BNNT dispersion method with exceptional dispersibility in a wide range of solvents has been demonstrated by surface polarity modulation through short-molecule pyridine attachment. Nitrogen atoms in pyridine are selectively bonded to electron-deficient boron atoms of the BNNT surface through Lewis acid-base reaction, which changes the surface polarity of BNNTs from neutral to negative. Re-dispersing pyridine-attached BNNTs (Py-BNNTs) create a thick and stable electronic double layer (EDL), resulting in uniform dispersion of BNNTs in solvents with an exceptional solubility parameter range of 18.5-48 MPa1/2. The uniform dispersion of BNNTs is maintained even after the mixing with diverse polymers. Finally, composites incorporating uniformly-distributed BNNTs have been realized, and extraordinary property enhancements have been observed. The thermal conductivity of 20 wt.% Py-BNNT/epoxy composite has been significantly improved by 69.6% and the tensile strength of 2 wt.% Py-BNNT/PVA has been dramatically improved by 75.3%. Our work demonstrates a simple and facile route to dispersing BNNTs in diverse solvents, consequently leading to selective utilization of BNNT dispersed solvents in various application fields.

Electronic Supplementary Material

Download File(s)
12274_2019_2612_MOESM1_ESM.pdf (1.7 MB)

References

[1]
Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979-2993.
[2]
Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413-2432.
[3]
Kim, J. H.; Pham, T. V.; Hwang, J. H.; Kim, C. S.; Kim, M. J. Boron nitride nanotubes: Synthesis and applications. Nano Converg. 2018, 5, 17.
[4]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655-2694.
[5]
Rubio, A.; Corkill, J. L.; Cohen, M. L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49, 5081-5084.
[6]
Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 1994, 28, 335-340.
[7]
Lee, C. H.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D. Y.; Yap, Y. Boron nitride nanotubes: Recent advances in their synthesis, functionalization, and applications. Molecules 2016, 21, 922.
[8]
Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 2018, 11, 2366-2378.
[9]
Tang, C. C.; Bando, Y.; Sato, T.; Kurashima, K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2002, 2002, 1290-1291.
[10]
Lourie, O. R.; Jones, C. R.; Bartlett, B. M.; Gibbons, P. C.; Ruoff, R. S.; Buhro, W. E. CVD growth of boron nitride nanotubes. Chem. Mater. 2000, 12, 1808-1810.
[11]
Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. Nano Lett. 2008, 8, 3298-3302.
[12]
Matveev, A. T.; Firestein, K. L.; Steinman, A. E.; Kovalskii, A. M.; Lebedev, O. I.; Shtansky, D. V.; Golberg, D. Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Res. 2015, 8, 2063-2072.
[13]
Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76, 4737-4740.
[14]
Narita, I.; Oku, T. Synthesis of boron nitride nanotubes by using YB6 powder. Solid State Commun. 2002, 122, 465-468.
[15]
Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Yusa H. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69, 2045-2047.
[16]
Arenal, R.; Stephan, O.; Cochon, J. L.; Loiseau, A. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 2007, 129, 16183-16189.
[17]
Laude, T.; Matsui, Y.; Marraud, A.; Jouffrey, B. Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 2000, 76, 3239-3241.
[18]
Chen, H.; Chen, Y.; Liu, Y.; Fu, L.; Huang, C.; Llewellyn, D. Over 1.0 mm-long boron nitride nanotubes. Chem. Phys. Lett. 2008, 463, 130-133.
[19]
Li, L. H.; Chen, Y. Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir 2010, 26, 5135-5140.
[20]
Chen, Y.; Conway, M.; Williams, J. S.; Zou, J. Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res. 2002, 17, 1896-1899.
[21]
Kim, K. S.; Kingston, C. T.; Hrdina, A.; Jakubinek, M. B.; Guan, J. W.; Plunkett, M.; Simard, B. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 2014, 8, 6211-6220.
[22]
Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Chemically activated boron nitride nanotubes. Chem. Asian J. 2009, 4, 1536-1540.
[23]
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Xie, R. G.; Sekiguchi, T.; Golberg, D. Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc. 2005, 127, 15996-15997.
[24]
Lee, C. H.; Zhang, D. Y.; Yap, Y. K. Functionalization, dispersion, and cutting of boron nitride nanotubes in water. J. Phys. Chem. C 2012, 116, 1798-1804.
[25]
Noei, M.; Asadi, H.; Salari, A. A.; Mahjoob, S. M. R. H. Adsorption of pyridine by using BN nanotube: A DFT study. Indian J. Fund. Appl. Sci. 2014, 4, 679-685.
[26]
Lim, H.; Suh, B. L.; Kim, M. J.; Yun, H.; Kim, J.; Kim, B. J.; Jang, S. G. High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. J. Membr. Sci. 2018, 551, 172-179.
[27]
Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions. Phys. Chem. Chem. Phys. 2015, 17, 3850-3866.
[28]
Chen, H.; Chen, Y.; Yu, J.; Williams, J. S. Purification of boron nitride nanotubes. Chem. Phys. Lett. 2006, 425, 315-319.
[29]
Tiano, A. L.; Park, C.; Lee, J. W.; Luong, H. H.; Gibbons, L. J.; Chu, S. H.; Applin, S.; Gnoffo, P.; Lowther, S.; Kim, H. J. et al. Boron nitride nanotube: Synthesis and applications. In Proceedings of SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, San Diego, USA, 2014, p 906006.
[30]
Wang, Y.; Mortimer, M.; Chang, C. H.; Holden, P. A. Alginic acid-aided dispersion of carbon nanotubes, graphene, and boron nitride nanomaterials for microbial toxicity testing. Nanomaterials (Basel) 2018, 8, 76.
[31]
Augustine, J.; Cheung, T.; Gies, V.; Boughton, J.; Chen, M. H.; Jakubek, Z. J.; Walker, S.; Martinez-Rubi, Y.; Simard, B.; Zou, S. Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Adv. 2019, 1, 1914-1923.
[32]
Pal, S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. Functionalization and solubilization of BN nanotubes by interaction with Lewis bases. J. Mater. Chem. 2007, 17, 450-452.
[33]
Singh, N. P.; Gupta, V. K.; Singh, A. P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer 2019, 180, 121724.
[34]
Saidur, R.; Leong, K. Y.; Mohammed, H. A. A review on applications and challenges of nanofluids. Renew. Sust. Energ. Rev. 2011, 15, 1646-1668.
[35]
Trisaksri, V.; Wongwises, S. Critical review of heat transfer characteristics of nanofluids. Renew. Sust. Energ. Rev. 2007, 11, 512-523.
[36]
Ferreira, T. H.; Miranda, M. C.; Rocha, Z.; Leal, A. S.; Gomes, D. A.; Sousa, E. M. B. An assessment of the potential use of BNNTs for boron neutron capture therapy. Nanomaterials (Basel) 2017, 7, 82.
[37]
Lee, W. J.; Clancy, A. J.; Kontturi, E.; Bismarck, A.; Shaffer, M. S. P. Strong and stiff: High-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl. Mater. Interfaces 2016, 8, 31500-31504.
[38]
Hu, C. M.; Li, J. L.; Liu, D. G.; Song, R. J.; Gu, J. F.; Prempeh, N.; Li, H. Y. Effects of the coagulation temperature on the properties of wet-spun poly(vinyl alcohol)-graphene oxide fibers. J. Appl. Polym. Sci. 2017, 134, 45463.
Nano Research
Pages 344-352
Cite this article:
Chang MS, Jang M-S, Yang S, et al. Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment. Nano Research, 2020, 13(2): 344-352. https://doi.org/10.1007/s12274-019-2612-4
Topics:

808

Views

12

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 29 October 2019
Revised: 15 December 2019
Accepted: 16 December 2019
Published: 07 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return