AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance

Junlin Lu1Jien Li1Jing Wan1Xiangyu Han1Peiyuan Ji1Shuang Luo1Mingxin Gu2Dapeng Wei2( )Chenguo Hu1( )
Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, China
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Show Author Information

Graphical Abstract

Abstract

Enhancement of supercapacitors (SCs) with high-energy density and high-power density is still a great challenge. In this paper, a facile strategy for in situ anchoring of Co3O4 particles on N doped carbon cloth (pCoNCC) is reported. Due to the interaction of the doped N and Co3O4, the electrochemical performance improves significantly, reaching 1,940.13 mF·cm-2 at 1 mA·cm-2 and energy density of 172.46 µWh·cm-2 at the power density of 400 µW·cm-2, much larger than that without N doping electrode of 28.5 mF·cm-2. An aqueous symmetric supercapacitor (ASSC) assembled by two pCoNCC electrodes achieves a maximum energy density of 447.42 µWh·cm-2 and a highest power density of 8,000 µW·cm-2. Utilizing such a high-energy storage ASSC, a digital watch and a temperature-humidity detector are powered for nearly 1 and 2 h, respectively. Moreover, the ASSC displays a superb electrochemical stability of 87.7% retention after 10,000 cycles at 40 mA·cm-2. This work would provide a new sight to enhance active materials performance and be beneficial for the future energy storage and supply systems.

Electronic Supplementary Material

Video
12274_2019_3242_MOESM2_ESM.avi
12274_2019_3242_MOESM3_ESM.avi
Download File(s)
12274_2019_3242_MOESM1_ESM.pdf (9.1 MB)

References

[1]
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
[2]
Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828-4850.
[3]
Huang, J.; Xiao, Y. B.; Peng, Z. Y.; Xu, Y. Z.; Li, L. B.; Tan, L. C.; Yuan, K.; Chen, Y. W. Co3O4 supraparticle-based bubble nanofiber and bubble nanosheet with remarkable electrochemical performance. Adv. Sci. 2019, 6, 1900107.
[4]
Xu, J.; Wang, Q. F.; Wang, X. W.; Xiang, Q. Y.; Liang, B.; Chen, D.; Shen, G. Z. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453-5462.
[5]
Cheng, C. F.; Li, X.; Liu, K. W.; Zou, F.; Tung, W. Y.; Huang, Y. F.; Xia, X. H.; Wang, C. L.; Vogt, B. D.; Zhu, Y. A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode. Energy Stor. Mater. 2019, 22, 265-274.
[6]
Li, G. C.; Huang, Y. L.; Yin, Z. L.; Guo, H. J.; Liu, Y.; Cheng, H.; Wu, Y. P.; Ji, X. B.; Wang, J. X. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Stor. Mater. 2020, 24, 304-311.
[7]
Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; He, Y. C.; Yin, X. T.; Que, W. X. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 2018, 28, 1705487.
[8]
Zang, X. N.; Shen, C. W.; Kao, E.; Warren, R.; Zhang, R. P.; Teh, K. S.; Zhong, J. W.; Wei, M. S.; Li, B. X.; Chu, Y. et al. Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 2018, 30, 1704754.
[9]
Ma, J. Y.; Guo, X. T.; Yan, Y.; Xue, H. G.; Pang, H. FeOx-based materials for electrochemical energy storage. Adv. Sci. 2018, 5, 1700986.
[10]
Liu, B. B.; Hou, J. G.; Zhang, T. T.; Xu, C. X.; Liu, H. A three- dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J. Mater. Chem. A 2019, 7, 16222-16230.
[11]
Zhang, N.; Li, Y. F.; Xu, J. Y.; Li, J. J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S. M.; Liu, Y. Y. et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano 2019, 13, 10612-10621.
[12]
Kim, S. G.; Jun, J.; Kim, Y. K.; Kim, J.; Lee, J. S.; Jang, J. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl. Mater. Interfaces 2020, 12, 20613-20622.
[13]
Liu, S. D.; Yin, Y.; Ni, D. X.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Stor. Mater. 2019, 22, 384-396.
[14]
Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076-2081.
[15]
Li, Q.; Lu, C. X.; Chen, C. M.; Xie, L. J.; Liu, Y. D.; Li, Y.; Kong, Q. Q.; Wang, H. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Stor. Mater. 2017, 8, 59-67.
[16]
Hao, J. X.; Wu, W. J.; Wang, Q.; Yan, D.; Liu, G. H.; Peng, S. L. Effect of grain size on electrochemical performance and kinetics of Co3O4 electrode materials. J. Mater. Chem. A 2020, 8, 7192-7196.
[17]
Sun, X. Z.; Lu, Y. X.; Li, T. T.; Zhao, S. S.; Gao, Z. D.; Song, Y. Y. Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. J. Mater. Chem. A 2019, 7, 372-380.
[18]
Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid- state supercapacitors. Small 2020, 16, 1906458.
[19]
Wei, G. J.; Zhou, Z.; Zhao, X. X.; Zhang, W. Q.; An, C. H. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 23721-23730.
[20]
Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard III, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-vacancy abundant ultrafine Co3O4/ graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.
[21]
Liao, Q. Y.; Li, N.; Jin, S. X.; Yang, G. W.; Wang, C. X. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9, 5310-5317.
[22]
Nethravathi, C.; Rajamathi, C. R.; Rajamathi, M.; Wang, X.; Gautam, U. K.; Golberg, D.; Bando, Y. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: Energy storage applications. ACS Nano 2014, 8, 2755-2765.
[23]
Ding, Y. C.; Hu, L. H.; He, D. C.; Peng, Y. Q.; Niu, Y. J.; Li, Z. Q.; Zhang, X. X.; Chen, S. H. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem. Eng. J. 2020, 380, 122489.
[24]
Li, W. Z.; Zu, X. H.; Zeng, Y. X.; Zhang, L. Y.; Tang, Z. L.; Yi, G. B.; Chen, Z. H.; Lin, W. J.; Lin, X. F.; Zhou, H. K. et al. Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular coupling for high-performance flexible supercapacitors. Nano Energy 2020, 67, 104275.
[25]
Sun, D. Y.; He, L. W.; Chen, R. Q.; Lin, Z. Y.; Lin, S. S.; Xiao, C. X.; Lin, B. Z. The synthesis, characterization and electrochemical performance of hollow sandwich microtubules composed of ultrathin Co3O4 nanosheets and porous carbon using a bio-template. J. Mater. Chem. A 2018, 6, 18987-18993.
[26]
Vilian, A. T. E.; Dinesh, B.; Rethinasabapathy, M.; Hwang, S. K.; Jin, C. S.; Huh, Y. S.; Han, Y. K. Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 2018, 6, 14367-14379.
[27]
Xie, L.; Wang, H. Y.; Chen, C. H.; Mao, S. J.; Chen, Y. Q.; Li, H. R.; Wang, Y. Cooperative assembly of asymmetric carbonaceous bivalve- like superstructures from multiple building blocks. Research 2018, 2018, 5807980.
[28]
Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676-2682.
[29]
Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.
[30]
Horng, Y. Y.; Lu, Y. C.; Hsu, Y. K.; Chen, C. C.; Chen, L. C.; Chen, K. H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 2010, 195, 4418-4422.
[31]
Xu, W. N.; Lu, J. L.; Huo, W. C.; Li, J. E.; Wang, X.; Zhang, C. L.; Gu, X.; Hu, C. G. Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 2018, 10, 14304-14313.
[32]
Dai, S. G.; Liu, J. L.; Wang, C. S.; Wang, X.; Xi, Y.; Wei, D. P.; Hu, C. G. Hierarchical porous nanostructures of manganese(III) oxyhydroxide for all-solid-state flexible supercapacitors. Energy Technol. 2016, 4, 1450-1454.
[33]
Li, J. E.; Luo, S.; Wang, C. C.; Tang, Q.; Wang, Y. W.; Han, X. Y.; Ran, H.; Wan, J.; Gu, X.; Wang, X. et al. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Res. 2020, 13, 759-767.
[34]
Lu, J. L.; Xu, W. N.; Li, S. Q.; Liu, W. L.; Javed, M. S.; Liu, G. L.; Hu, C. G. Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. J. Mater. Sci. 2018, 53, 739-748.
[35]
Wang, H. Y.; Chen, J. Y.; Fan, R. X.; Wang, Y. A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustain. Energy Fuels 2018, 2, 2727-2732.
[36]
Wang, H. Y.; Xu, C. M.; Chen, Y. Q.; Wang, Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Stor. Mater. 2017, 8, 127-133.
[37]
Wang, H. Y.; Deng, J.; Xu, C. M.; Chen, Y. Q.; Xu, F.; Wang, J.; Wang, Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Stor. Mater. 2017, 7, 216-221.
[38]
Wang, M. J.; Song, X. F.; Yang, Q.; Hua, H.; Dai, S. G.; Hu, C. G.; Wei, D. P. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation. J. Power Sources 2015, 273, 624-630.
[39]
Li, Y. R.; Wang, X.; Yang, Q.; Javed, M. S.; Liu, Q. P.; Xu, W. N.; Hu, C. G.; Wei, D. P. Ultra-fine CuO nanoparticles embedded in three- dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim. Acta 2017, 234, 63-70.
[40]
Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[41]
Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695-10702.
[42]
Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288-6296.
[43]
Sun, G. L.; Ma, L. Y.; Ran, J. B.; Shen, X. Y.; Tong, H. Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: Implications for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9542-9554.
[44]
Qorbani, M.; Chou, T. c.; Lee, Y. H.; Samireddi, S.; Naseri, N.; Ganguly, A.; Esfandiar, A.; Wang, C. H.; Chen, L. C.; Chen, K. H. et al. Multi-porous Co3O4 nanoflakes@sponge-like few-layer partially reduced graphene oxide hybrids: Towards highly stable asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 12569-12577.
[45]
Xu, K. B.; Ma, S.; Shen, Y. N.; Ren, Q. L.; Yang, J. M.; Chen, X.; Hu, J. Q. CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem. Eng. J. 2019, 369, 363-369.
[46]
Lee, G.; Jang, J. High-performance hybrid supercapacitors based on novel Co3O4/Co(OH)2 hybrids synthesized with various-sized metal-organic framework templates. J. Power Sources 2019, 423, 115-124.
[47]
Chen, M. Y.; Li, W. H.; Ma, W. H.; Qi, P. C.; Yang, W. J.; Wang, S. Y.; Lu, Y.; Tang, Y. W. Remarkable enhancement of the electrochemical properties of Co3O4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell. J. Mater. Chem. A 2019, 7, 1678-1686.
[48]
Huang, Y. P.; Cui, F.; Bao, J.; Zhao, Y.; Lian, J. B.; Liu, T. X.; Li, H. M. MnCo2S4/FeCo2S4 “lollipop” arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 20778-20789.
[49]
Lv, H. H.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Yu, T. T.; Lv, M. L.; Wang, J. W.; Zhai, Y.; Hu, J. Q. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 14287-14298.
Nano Research
Pages 2410-2417
Cite this article:
Lu J, Li J, Wan J, et al. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Research, 2021, 14(7): 2410-2417. https://doi.org/10.1007/s12274-019-3242-6
Topics:

954

Views

29

Crossref

0

Web of Science

26

Scopus

1

CSCD

Altmetrics

Received: 14 September 2020
Revised: 12 November 2020
Accepted: 13 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return