AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface

Yuhang Wang1( )Zhiquan He1Jinbing Zhang1Hao Liu1Xubo Lai2Boyang Liu2Yibao Chen2Fengping Wang1( )Liuwan Zhang2( )
Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of Low-Dimensional Quantum Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

The oxygen adsorption can drastically alter the electronic properties of the two-dimensional (2D) materials, which is usually difficult to be removed. In this work, we report the ultraviolet (UV) illumination induced desorption of the O2 molecules from the monolayer MoS2 surface by using the atmosphere dependent transport measurement, Kelvin probe microscopy, photoluminescence spectroscopy and x-ray photoelectron spectroscopy. Obvious increasing of the conductivity, rising of the Fermi level, and red shift of the photoluminescence peaks of the MoS2 were observed after the UV illumination in vacuum, indicating the elimination of the depletion effect from the oxygen adsorption. Such parameter changes can be reversibly recovered by the subsequent O2 exposure. Furthermore, obvious decreasing of the oxygen concentration after the UV illumination was also observed by x-ray photoelectron spectroscopy. Thus the UV induced O2 photodesorption effect is evidenced. The photo-excited charge transfer mechanism is proposed to account for the photodesorption effect.These results provide a nondestructive way to clean the MoS2 surface and manipulate the performance of the MoS2 based devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2614_MOESM1_ESM.pdf (1.2 MB)

References

[1]
Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879-4891.
[2]
Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744-1752.
[3]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[4]
Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.
[5]
Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.
[6]
Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.
[7]
Shokri, A.; Salami, N. Gas sensor based on MoS2 monolayer. Sens. Actuator B Chem. 2016, 236, 378-385.
[8]
Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y. J.; Park, S. G.; Kwon, J. D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.
[9]
Shakya, J.; Kumar, S.; Mohanty, T. Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2. J. Appl. Phys. 2018, 123, 165103.
[10]
Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24, 095202.
[11]
Lee, S. Y.; Kim, U. J.; Chung, J. G.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100-6107.
[12]
Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular Physisorption gating. Nano Lett. 2013, 13, 2831-2836.
[13]
Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.
[14]
Xu, L.; Zhao, L. Y.; Wang, Y. S.; Zou, M. C.; Zhang, Q.; Cao, A. Y. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619-1624.
[15]
Zhao, B.; Shang, C.; Qi, N.; Chen, Z. Y.; Chen, Z. Q. Stability of defects in monolayer MoS2 and their interaction with O2 molecule: A first-principles study. Appl. Surf. Sci. 2017, 412, 385-393.
[16]
Zhao, S. J.; Xue, J. M.; Kang, W. Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 2014, 595-596, 35-42.
[17]
Liu, M. X.; Shi, J. P.; Li, Y. C.; Zhou, X. B.; Ma, D. L.; Qi, Y.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered sulfur vacancy evolution in monolayer MoS2/Graphene Heterostructures. Small 2017, 13, 1602967.
[18]
Wang, Y. H.; Lai, X. B.; Liu, B. Y.; Chen, Y. B.; Lu, Y. Z.; Wang, F. P.; Zhang, L. W. UV-induced desorption of oxygen at the TiO2 surface for highly sensitive room temperature O2 sensing. J. Alloys Compd. 2019, 793, 583-589.
[19]
Fan, S. W.; Srivastava, A. K.; Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106.
[20]
Lin, J.; Zhong, J. B.; Kyle, J. R.; Penchev, M.; Ozkan, M.; Ozkan, C. S. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 2011, 22, 355701.
[21]
Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Photoinduced molecular desorption from graphene films. Appl. Phys. Lett. 2012, 101, 053107.
[22]
Hsu, Y. Y.; Lin, C. Y.; Lai, Y. C.; Wu, K. R.; Ng, K. K.; Chang, C. S.; Chi, G. C.; Yu, P. C.; Chien, F. S. S. Optical-power-dependent photodesorption kinetics of graphene studied by conductance response. Opt. Express 2015, 23, 14344-14350.
[23]
Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K. Mechanical cleaning of graphene. Appl. Phys. Lett. 2012, 100, 073110.
[24]
Wang, Y. H.; Shi, X. L.; Lai, X. B.; Gao, Z. P.; Liu, L. X.; Wang, Y.; Zhu, W. J.; Meng, C. M.; Zhang, L. W. Fabricating Ohmic contact on Nb-doped SrTiO3 surface in nanoscale. Appl. Phys. Lett. 2016, 108, 192102.
[25]
Zhao, G. Y.; Deng, H.; Tyree, N.; Guy, M.; Lisfi, A.; Peng, Q.; Yan, A. A.; Wang, C. D.; Lan, Y. C. Recent progress on irradiation-induced defect engineering of two-dimensional 2H-MoS2 few layers. Appl. Sci. 2019, 9, 678.
[26]
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[27]
Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.
[28]
Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.
[29]
Illarionov, Y. Y.; Rzepa, G.; Waltl, M.; Knobloch, T.; Grill, A.; Furchi, M. M.; Mueller, T.; Grasser, T. The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors. 2D Mater. 2016, 3, 035004.
[30]
Ma, N.; Jena, D. Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2015, 2, 015003.
[31]
Feng, Y. L.; Zhang, K. L.; Li, H.; Wang, F.; Zhou, B. Z.; Fang, M. X.; Wang, W. C.; Wei, J.; Wong, H. S. P. In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy. Nanotechnology 2017, 28, 295705.
[32]
Kaushik, V.; Varandani, D.; Mehta, B. R. Nanoscale mapping of layer-dependent surface potential and junction properties of CVD-grown MoS2 domains. J. Phys. Chem. C 2015, 119, 20136-20142.
[33]
Tosun, M.; Fu, D. Y.; Desai, S. B.; Ko, C.; Kang, J. S.; Lien, D. H.; Najmzadeh, M.; Tongay, S.; Wu, J. Q.; Javey, A. MoS2 heterojunctions by thickness modulation. Sci. Rep. 2015, 5, 10990.
[34]
Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430-3434.
[35]
Lee, N. J.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Jeon, D. Y.; Kim, D. C.; Seo, S.; Chung, H. J. The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl. Phys. Lett. 2009, 95, 222107.
[36]
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[37]
Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.
Nano Research
Pages 358-365
Cite this article:
Wang Y, He Z, Zhang J, et al. UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Research, 2020, 13(2): 358-365. https://doi.org/10.1007/s12274-020-2614-2
Topics:

745

Views

26

Crossref

N/A

Web of Science

26

Scopus

2

CSCD

Altmetrics

Received: 30 August 2019
Revised: 08 December 2019
Accepted: 18 December 2019
Published: 02 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return