AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster

Xinzhang Lin1,4Hengjiang Cong2Keju Sun3Xuemei Fu1,4Wanchao Kang5Xiuli Wang5Shengye Jin6Ren’an Wu7Chao Liu1( )Jiahui Huang1( )
Gold Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
College of Chemistry and Molecular Sciences, Engineering Research Centre of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Show Author Information

Graphical Abstract

Abstract

Doping foreign atom(s) in metal nanoclusters is an effective strategy to engineer the properties and functionalities of metal nanoclusters. However, until now, to dope Pd atom into Ag nanoclusters remains a huge challenge. Here we develop a one-step rapid method to synthesize the Pd-doped Ag nanocluster with high yield. The prepared Pd1Ag28 nanocluster was characterized by mass spectroscopy, X-ray photoelectron spectroscopy, X-ray crystallography, fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy and transient absorption spectroscopy. The nanocluster exhibits a perfect face-centered cubic (FCC) kernel structure with a tetrahedron-like shell. Of note, Pd1Ag28 nanocluster had an unexpectedly long excited-state lifetime of 3.3 microseconds, which is the longest excited-state lifetime for Ag-based nanoclusters so far. Meanwhile, the excellent near-infrared luminescence indicated the nanocluster has the potential in fluorescent bio-imaging. Besides, it was revealed that Pd1Ag28 nanocluster could be transformed into Au1Ag28 nanocluster via ion exchange reaction of AuPPh3Cl with Pd1Ag28 nanocluster. This work provides an efficient synthetic protocol of alloy nanoclusters and will contribute to study the effect of foreign atom on the properties of metal nanoclusters.

Electronic Supplementary Material

Download File(s)
12274_2020_2615_MOESM1_ESM.cif (11.3 MB)
12274_2020_2615_MOESM2_ESM.pdf (1.8 MB)
12274_2020_2615_MOESM3_ESM.pdf (342.7 KB)

References

[1]
Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.
[2]
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208-8271.
[3]
Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338-1348.
[4]
Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018, 51, 3094-3103.
[5]
Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758-10834.
[6]
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084-3093.
[7]
Tang, Q.; Hu, G. X.; Fung, V.; Jiang, D. E. Insights into interfaces, stability, electronic properties, and catalytic activities of atomically precise metal nanoclusters from first principles. Acc. Chem. Res. 2018, 51, 2793-2802.
[8]
Higaki, T.; Li, Y. W.; Zhao, S.; Li, Q.; Li, S. T.; Du, X. S.; Yang, S.; Chai, J. S.; Jin, R. C. Atomically tailored gold nanoclusters for catalytic application. Angew. Chem., Int. Ed. 2019, 58, 8291-8302.
[9]
Jiang, X. Y.; Du, B. J.; Huang, Y. Y.; Zheng, J. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today 2018, 21, 106-125.
[10]
Yang, H. Y.; Lei, J.; Wu, B. H.; Wang, Y.; Zhou, M.; Xia, A. D.; Zheng, L. S.; Zheng, N. F. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300-302.
[11]
Yang, H. Y.; Wang, Y.; Zheng, N. F. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. Nanoscale 2013, 5, 2674-2677.
[12]
Conn, B. E.; Atnagulov, A.; Yoon, B.; Barnett, R. N.; Landman, U.; Bigioni, T. P. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle. Sci. Adv. 2016, 2, e1601609.
[13]
Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun. 2018, 9, 744.
[14]
Lin, X. Z.; Liu, C.; Fu, X. M.; Huang, J. H. Cu2+-induced structural isomers: Effect of foreign metal ions on the structure and properties of silver nanoclusters. Chem. Asian J. 2019, 14, 972-976.
[15]
Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]-: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578-11581.
[16]
AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970-11975.
[17]
Tian, F.; Chen, R. Pd-mediated synthesis of Ag33 chiral nanocluster with core-shell structure in T point group. J. Am. Chem. Soc. 2019, 141, 7107-7114.
[18]
Chai, J. S.; Yang, S.; Lv, Y.; Chen, T.; Wang, S. X.; Yu, H. Z.; Zhu, M. Z. A unique pair: Ag40 and Ag46 nanoclusters with the same surface but different cores for structure-property correlation. J. Am. Chem. Soc. 2018, 140, 15582-15585.
[19]
Bodiuzzaman, M.; Ghosh, A.; Sugi, K. S.; Nag, A.; Khatun, E.; Varghese, B.; Paramasivam, G.; Antharjanam, S.; Natarajan, G.; Pradeep, T. Camouflaging structural diversity: Co-crystallization of two different nanoparticles having different cores but the same shell. Angew. Chem., Int. Ed. 2019, 58, 189-194.
[20]
Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399-402.
[21]
Zou, X. J.; Jin, S.; Du, W. J.; Li, Y. F.; Li, P.; Wang, S. X.; Zhu, M. Z. Multi-ligand-directed synthesis of chiral silver nanoclusters. Nanoscale 2017, 9, 16800-16805.
[22]
Du, W. J.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Ag50(Dppm)6(SR)30 and its homologue AuxAg50-x(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc. 2017, 139, 1618-1624.
[23]
Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A. et al. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, total structure, and optical properties of a large box-shaped silver nanocluster. J. Am. Chem. Soc. 2016, 138, 14727-14732.
[24]
Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc. 2017, 139, 16113-16116.
[25]
Yang, H. Y.; Wang, Y.; Chen, X.; Zhao, X. J.; Gu, L.; Huang, H. Q.; Yan, J. Z.; Xu, C. F.; Li, G.; Wu, J. C. et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 2016, 7, 12809.
[26]
Ren, L. T.; Yuan, P.; Su, H. F.; Malola, S.; Lin, S. C.; Tang, Z. C.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Bulky surface ligands promote surface reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) nanoclusters: Models for multiple-twinned nanoparticles. J. Am. Chem. Soc. 2017, 139, 13288-13291.
[27]
Song, Y. B.; Lambright, K.; Zhou, M.; Kirschbaum, K.; Xiang, J.; Xia, A. D.; Zhu, M. Z.; Jin, R. C. Large-scale synthesis, crystal structure, and optical properties of the Ag146Br2(SR)80 nanocluster. ACS Nano 2018, 12, 9318-9325.
[28]
Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114-3124.
[29]
Ferrari, P.; Vanbuel, J.; Janssens, E.; Lievens, P. Tuning the reactivity of small metal clusters by heteroatom doping. Acc. Chem. Res. 2018, 51, 3174-3182.
[30]
Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784-2792.
[31]
Taylor, M. G.; Mpourmpakis, G. Rethinking heterometal doping in ligand-protected metal nanoclusters. J. Phys. Chem. Lett. 2018, 9, 6773-6778.
[32]
Sharma, S.; Chakrahari, K. K.; Saillard, J. Y.; Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475-2483.
[33]
Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 2018, 51, 2774-2783.
[34]
Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285-300.
[35]
Liu, C.; Ren, X. Q.; Lin, F.; Fu, X. M.; Lin, X. Z.; Li, T.; Sun, K. J.; Huang, J. H. Structure of the Au23-xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants. Angew. Chem., Int. Ed. 2019, 58, 11335-11339.
[36]
Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922-926.
[37]
Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T. Ag7Au6: A 13-atom alloy quantum cluster. Angew. Chem., Int. Ed. 2012, 51, 2155-2159.
[38]
Jin, S.; Xu, F. Q.; Du, W. J.; Kang, X.; Chen, S.; Zhang, J.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Isomerism in Au-Ag alloy nanoclusters: Structure determination and enantioseparation of [Au9Ag12(SR)4(Dppm)6X6]3+. Inorg. Chem. 2018, 57, 5114-5119.
[39]
Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848-13853.
[40]
Bootharaju, M. S.; Sinatra, L.; Bakr, O. M. Distinct metal-exchange pathways of doped Ag25 nanoclusters. Nanoscale 2016, 8, 17333-17339.
[41]
Juarez-Mosqueda, R.; Malola, S.; Häkkinen, H. Stability, electronic structure, and optical properties of protected gold-doped silver Ag29-xAux (x = 0-5) nanoclusters. Phys. Chem. Chem. Phys. 2017, 19, 13868-13874.
[42]
Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749-5753.
[43]
Jin, S.; Zou, X. J.; Xiong, L.; Du, W. J.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Bonding of two 8-electron superatom clusters. Angew. Chem., Int. Ed. 2018, 57, 16768-16772.
[44]
Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.
[45]
Yao, Q. F.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. P. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 2017, 8, 1555.
[46]
Huang, L.; Yan, J. Z.; Ren, L. T.; Teo, B. K.; Zheng, N. F. Peculiar holes on checkerboard facets of a trigonal prismatic Au9Ag36(SPhCl2)27(PPh3)6 cluster caused by steric hindrance and magic electron count. Dalton Trans. 2017, 46, 1757-1760.
[47]
Wang, S. X.; Jin, S.; Yang, S.; Chen, S.; Song, Y. B.; Zhang, J.; Zhu, M. Z. Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property. Sci. Adv. 2015, 1, e1500441.
[48]
Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2- (M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880-11883.
[49]
He, L. Z.; Yuan, J. Y.; Xia, N.; Liao, L. W.; Liu, X.; Gan, Z. B.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J. Am. Chem. Soc. 2018, 140, 3487-3490.
[50]
Kang, X.; Zhou, M.; Wang, S. X.; Jin, S.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581-2587.
[51]
Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. M.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing. Chem. Mater. 2018, 30, 2719-2725.
[52]
Lin, X. Z.; Liu, C.; Sun, K. J.; Wu, R. A.; Fu, X. M.; Huang, J. H. Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Res. 2019, 12, 309-314.
[53]
Barik, S. K.; Chiu, T. H.; Liu, Y. C.; Chiang, M. H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Mono- and hexa-palladium doped silver nanoclusters stabilized by dithiolates. Nanoscale 2019, 11, 14581-14586.
[54]
Yao, Q. F.; Yuan, X.; Chen, T. K.; Leong, D. T.; Xie, J. P. Engineering functional metal materials at the atomic level. Adv. Mater. 2018, 30, 1802751.
[55]
Du, X. L.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402-9405.
[56]
Chen, Y. S.; Choi, H.; Kamat, P. V. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc. 2013, 135, 8822-8825.
[57]
Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470-1479.
[58]
Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-NAP)41 and its implications. J. Am. Chem. Soc. 2017, 139, 9994-10001.
[59]
Li, Q.; Zhou, M.; So, W. Y.; Huang, J. C.; Li, M. X.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z. Z. et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 2019, 141, 5314-5325.
[60]
Zhou, M.; Yao, C. H.; Sfeir, M. Y.; Higaki, T.; Wu, Z. K.; Jin, R. C. Excited-state behaviors of M1Au24(SR)18 nanoclusters: The number of valence electrons matters. J. Phys. Chem. C 2018, 122, 13435-13442.
[61]
Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279-282.
[62]
Aly, S. M.; AbdulHalim, L. G.; Besong, T. M. D.; Soldan, G.; Bakr, O. M.; Mohammed, O. F. Ultrafast static and diffusion-controlled electron transfer at Ag29 nanocluster/molecular acceptor interfaces. Nanoscale 2016, 8, 5412-5416.
[63]
Pelton, M.; Tang, Y.; Bakr, O. M.; Stellacci, F. Long-lived charge-separated states in ligand-stabilized silver clusters. J. Am. Chem. Soc. 2012, 134, 11856-11859.
[64]
Chen, T. K; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967-11977.
[65]
Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble [Au25(SR)18]- using a stoichiometric amount of NaBh4. J. Am. Chem. Soc. 2018, 140, 11370-11377.
[66]
Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z. H.; Wang, S. X.; Wei, S. Q.; Zhu, M. Z. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685-8693.
[67]
Kang, X.; Wei, X.; Jin, S.; Yuan, Q. Q.; Luan, X. Q.; Pei, Y.; Wang, S. X.; Zhu, M. Z.; Jin, R. C. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci. USA 2019, 116, 18834-18840.
[68]
Zhang, H. K.; Zhao, Z.; McGonigal, P. R.; Ye, R. Q.; Liu, S. J.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J. P.; Rogach, A. L. et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today, in press, .
[69]
Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
[70]
Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962-975.
[71]
Chen, Y. T.; Yang, T. Q.; Pan, H. F.; Yuan, Y. F.; Chen, L.; Liu, M. W.; Zhang, K.; Zhang, S. J.; Wu, P.; Xu, J. H. Photoemission mechanism of water-soluble silver nanoclusters: Ligand-to-metal-metal charge transfer vs. strong coupling between surface plasmon and emitters. J. Am. Chem. Soc. 2014, 136, 1686-1689.
Nano Research
Pages 366-372
Cite this article:
Lin X, Cong H, Sun K, et al. One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster. Nano Research, 2020, 13(2): 366-372. https://doi.org/10.1007/s12274-020-2615-1
Topics:

802

Views

31

Crossref

N/A

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 21 October 2019
Revised: 17 December 2019
Accepted: 18 December 2019
Published: 02 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return