AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses

Zhiwei LiYun LiuMelinda MarinYadong Yin( )
Department of Chemistry, University of California, Riverside, CA 92521, USA
Show Author Information

Graphical Abstract

Abstract

We report a remarkable thickness-dependent wrinkling behavior of oxygen plasma-treated polydimethylsiloxane (PDMS) films, in which an energy barrier separates the wrinkling mechanics into two regimes. For thick films, the film wrinkles with a constant periodicity which can be precisely predicted by the classic nonlinear finite mechanics. Reducing the film thickness below 1 mm leads to nonuniform wrinkles with an increasing periodicity which gives rise to random scattering and transparency changes under mechanical strains. By tuning the film thickness, we were able to control both the quality and size of the periodic wrinkles and further design mechanochromic devices featuring brilliant structural colors and programmable colorimetric responses. This work sheds light on the fundamental understanding of the wrinkling mechanics of bilayer systems and their intriguing mechanochromic applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2617_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146-149.
[2]
Yu, C. J.; O’Brien, K.; Zhang, Y. H.; Yu, H. B.; Jiang, H. Q. Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Appl. Phys. Lett. 2010, 96, 041111.
[3]
Ma, T.; Liang, H. S.; Chen, G.; Poon, B.; Jiang, H. Q.; Yu, H. B. Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating. Opt. Express 2013, 21, 11994-12001.
[4]
Li, Z.; Yang, D. Y.; Liu, X.; Ma, H. W. Substrate-induced controllable wrinkling for facile nanofabrication. Macromol. Rapid Commun. 2009, 30, 1549-1553.
[5]
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212.
[6]
Jiang, H. Q.; Khang, D. Y.; Song, J. Z.; Sun, Y. G.; Huang, Y. G.; Rogers, J. A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607-15612.
[7]
Song, J.; Jiang, H.; Choi, W. M.; Khang, D.; Huang, Y.; Rogers, J. A. An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 2008, 103, 014303.
[8]
Choi, W. M.; Song, J. Z.; Khang, D. Y.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 2007, 7, 1655-1663.
[9]
Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650.
[10]
Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403-409.
[11]
Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321-325.
[12]
Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039-1046.
[13]
Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 2004, 3, 545-550.
[14]
Stafford, C. M.; Vogt, B. D.; Harrison, C.; Julthongpiput, D.; Huang, R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules 2006, 39, 5095-5099.
[15]
Chung, J. Y.; Chastek, T. Q.; Fasolka, M. J.; Ro, H. W.; Stafford, C. M. Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. Acs Nano 2009, 3, 844-852.
[16]
Wilder, E. A.; Guo, S.; Lin-Gibson, S.; Fasolka, M. J.; Stafford, C. M. Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 2006, 39, 4138-4143.
[17]
Yu, C. J.; Jiang, H. Q. Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 2010, 519, 818-822.
[18]
Huck, W. T. S. Artificial skins: Hierarchical wrinkling. Nat. Mater. 2005, 4, 271-272.
[19]
Cai, S.; Breid, D.; Crosby, A. J.; Suo, Z.; Hutchinson, J. W. Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 2011, 59, 1094-1114.
[20]
Kim, P.; Hu, Y. H.; Alvarenga, J.; Kolle, M.; Suo, Z. G.; Aizenberg, J. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns. Adv. Opt. Mater. 2013, 1, 381-388.
[21]
Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V. V.; Chanana, M.; König, T. A. F.; Fery, A. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett. 2014, 14, 6863-6871.
[22]
Nania, M.; Matar, O. K.; Cabral, J. T. Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter 2015, 11, 3067-3075.
[23]
Hou, H. H.; Yin, J.; Jiang, X. S. Smart patterned surface with dynamic wrinkles. Acc. Chem. Res. 2019, 52, 1025-1035.
[24]
Melzer, M.; Karnaushenko, D.; Lin, G. G.; Baunack, S.; Makarov, D.; Schmidt, O. G. Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv. Mater. 2015, 27, 1333-1338.
[25]
Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agraït, N.; Rubio-Bollinger, G.; Guinea, F.; Roldán, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931-2937.
[26]
Xie, T.; Xiao, X. C.; Li, J. J.; Wang, R. M. Encoding localized strain history through wrinkle based structural colors. Adv. Mater. 2010, 22, 4390-4394.
[27]
Ohzono, T.; Suzuki, K.; Yamaguchi, T.; Fukuda, N. Tunable optical diffuser based on deformable wrinkles. Adv. Opt. Mater. 2013, 1, 374-380.
[28]
Li, Z. W.; Yin, Y. D. Stimuli-responsive optical nanomaterials. Adv. Mater. 2019, 31, 1807061.
[29]
Bae, H. J.; Bae, S.; Park, C.; Han, S.; Kim, J.; Kim, L. N.; Kim, K.; Song, S. H.; Park, W.; Kwon, S. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv. Mater. 2015, 27, 2083-2089.
[30]
Choi, H. J.; Kim, J. H.; Lee, H. J.; Song, S. A.; Lee, H. J.; Han, J. H.; Moon, M. W. Wrinkle-based measurement of elastic modulus of nano-scale thin Pt film deposited on polymeric substrate: Verification and uncertainty analysis. Exp. Mech. 2010, 50, 635-641.
[31]
Huang, Z. Y.; Hong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 2005, 53, 2101-2118.
[32]
Huang, R.; Suo, Z. Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 2002, 91, 1135-1142.
[33]
Huang, R. Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 2005, 53, 63-89.
[34]
Im, S. H.; Huang, R. Evolution of wrinkles in elastic-viscoelastic bilayer thin films. J. Appl. Mech. 2005, 72, 955-961.
[35]
Chen, X.; Hutchinson, J. W. Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 2004, 71, 597-603.
[36]
Groenewold, J. Wrinkling of plates coupled with soft elastic media. Physica A: Stat. Mech. Appl. 2001, 298, 32-45.
[37]
Huang, R.; Suo, Z. Instability of a compressed elastic film on a viscous layer. Int. J. Solids Struc. 2002, 39, 1791-1802.
[38]
Huang, R.; Yin, H.; Liang, J.; Sturm, J. C.; Hobart, K. D.; Suo, Z. Mechanics of relaxing sige islands on a viscous glass. Acta Mech. Sin. 2002, 18, 441-456.
[39]
Mirley, C. L.; Koberstein, J. T. A room temperature method for the preparation of ultrathin SIOX films from langmuir-blodgett layers. Langmuir 1995, 11, 1049-1052.
[40]
Chan, V. Z. H.; Thomas, E. L.; Frommer, J.; Sampson, D.; Campbell, R.; Miller, D.; Hawker, C.; Lee, V.; Miller, R. D. Curious morphology of silicon-containing polymer films on exposure to oxygen plasma. Chem. Mater. 1998, 10, 3895-3901.
[41]
Bodas, D.; Khan-Malek, C. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 2006, 83, 1277-1279.
[42]
Bayley, F. A.; Liao, J. L.; Stavrinou, P. N.; Chiche, A.; Cabral, J. T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-μm wrinkling. Soft Matter 2014, 10, 1155-1166.
[43]
Ouyang, M.; Yuan, C.; Muisener, R. J.; Boulares, A.; Koberstein, J. T. Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem. Mater. 2000, 12, 1591-1596.
[44]
Owen, M. J.; Smith, P. J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol. 1994, 8, 1063-1075.
[45]
Hillborg, H.; Gedde, U. W. Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 1998, 39, 1991-1998.
[46]
Béfahy, S.; Lipnik, P.; Pardoen, T.; Nascimento, C.; Patris, B.; Bertrand, P.; Yunus, S. Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir 2010, 26, 3372-3375.
[47]
Li, Z. W.; Yang, F.; Yin, Y. D. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater. 2019, 1903467.
[48]
Li, Z. W.; Wang, M. S.; Zhang, X. L.; Wang, D. W.; Xu, W. J.; Yin, Y. D. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett. 2019, 19, 6673-6680.
Nano Research
Pages 1882-1888
Cite this article:
Li Z, Liu Y, Marin M, et al. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Research, 2020, 13(7): 1882-1888. https://doi.org/10.1007/s12274-020-2617-z
Topics:
Part of a topical collection:

1073

Views

47

Crossref

N/A

Web of Science

49

Scopus

2

CSCD

Altmetrics

Received: 21 November 2019
Revised: 14 December 2019
Accepted: 18 December 2019
Published: 06 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return