AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive

Zhao Pan1Kai-Run Zhang3Huai-Ling Gao1Yong Zhou3Bei-Bei Yan1Chi Yang2Zhi-Yuan Zhang2Liang Dong1Si-Ming Chen1Rui Xu3Duo-Hong Zou2,3( )Shu-Hong Yu1 ( )
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital & College, Anhui Medical University, Heifei 230032, China
Show Author Information

Graphical Abstract

Abstract

Efficient initiation and resolution of inflammation are crucial for wound repair. However, with using tissue adhesives for wound repair, patients occasionally suffered from delayed healing process because slow elimination of those exogenous adhesives generally leads to chronic inflammation. As the demand for minimal invasive therapy continues to rise, desire for adhesive materials that can effectively reconnect surgical gaps and promote wound regeneration becomes increasingly urgent. Herein, by exploiting the inherent porous structure and performance of adhesion to tissue of mesoporous silica nanoparticles (MSNs), we demonstrate a tissue adhesive that can elicit acute inflammatory response and get eliminated after tissue reformation. With formation of nanocomposites in wound gaps, the injured tissues can get reconnected conveniently. The resultant accelerated healing process verify that the strategy of exploiting unique properties of nanomaterials can effectively promote inflammation resolution and wound repair. This design strategy will inspire more innovative tissue adhesives for clinical applications.

Electronic Supplementary Material

Video
12274_2020_2619_MOESM1_ESM.mp4
12274_2020_2619_MOESM2_ESM.mp4
Download File(s)
12274_2020_2619_MOESM3_ESM.pdf (8.8 MB)

References

[1]
Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314-321.
[2]
Oberyszyn, T. M. Inflammation and wound healing. Front. Biosci. 2007, 12, 2993-2999.
[3]
Eming, S. A.; Krieg, T.; Davidson, J. M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol. 2007, 127, 514-525.
[4]
Spotnitz, W. D.; Burks, S. Hemostats, sealants, and adhesives: Components of the surgical toolbox. Transfusion 2008, 48, 1502-1516.
[5]
Annabi, N.; Tamayol, A.; Shin, S. R.; Ghaemmaghami, A. M.; Peppas, N. A.; Khademhosseini, A. Surgical materials: Current challenges and nano-enabled solutions. Nano Today 2014, 9, 574-589.
[6]
Barrett, D. G.; Bushnell, G. G.; Messersmith, P. B. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv. Healthc. Mater. 2013, 2, 745-755.
[7]
Li, J.; Celiz A. D.; Yang J.; Yang Q.; Wamala I.; Whyte W.; Seo B. R.; Vasilyev N. V.; Vlassak J. J.; Suo Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378-381.
[8]
Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semi. Immunol. 2008, 20, 86-100.
[9]
Klopfleisch, R.; Jung, F. The pathology of the foreign body reaction against biomaterials. J. Biomed. Mater. Res. A 2017, 105, 927-940.
[10]
Leggat, P. A.; Smith, D. R.; Kedjarune, U. Surgical applications of cyanoacrylate adhesives: A review of toxicity. ANZ. J. Surg. 2007, 77, 209-213.
[11]
Mizrahi, B.; Stefanescu, C. F.; Yang C.; Lawlor M. W.; Ko D.; Langer R.; Kohane D. S. Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta Biomater. 2011, 7, 3150-3157.
[12]
Klimo, P. Jr.; Khalil, A.; Slotkin, J. R.; Smith, E. R.; Scott, R. M.; Goumnerova, L. C. Wound complications associated with the use of bovine serum albumin-glutaraldehyde surgical adhesive in pediatric patients. Neurosurgery 2007, 60, 305-309.
[13]
LeMaire, S. A.; Schmittling, Z. C.; Coselli, J. S.; Ündar, A.; Deady, B. A.; Clubb, F. J.; Fraser, C. D. BioGlue surgical adhesive impairs aortic growth and causes anastomotic strictures. Ann. Thorac. Surg. 2002, 73, 1500-1505.
[14]
Wu, H. B.; Li, F. Y.; Wang, S. F.; Lu, J. X.; Li, J. Q.; Du, Y.; Sun, X. L.; Chen, X. Y.; Gao, J. Q.; Ling, D. S. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials, 2018, 151, 66-77.
[15]
Meddahi-Pelle, A.; Legrand, A.; Marcellan, A.; Louedec, L.; Letourneur, D.; Leibler, L. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 6369-6373.
[16]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
[17]
Renwick, L. C.; Brown, D.; Clouter, A.; Donaldson, K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 2004, 61, 442-447.
[18]
Gustafson, H. H.; Holt-Casper, D.; Grainger, D. W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 487-510.
[19]
Shen, D.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.
[20]
Rose, S.; Prevoteau, A.; Elzière, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 2014, 505, 382-385.
[21]
Lundqvist, M.; Sethson, I.; Jonsson, B. H. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles’ curvature and the protein stability. Langmuir 2004, 20, 10639-10647.
[22]
Hata, K.; Higashisaka, K.; Nagano, K.; Mukai, Y.; Kamada, H.; Tsunoda, S. I.; Yoshioka, Y.; Tsutsumi, Y. Evaluation of silica nanoparticle binding to major human blood proteins. Nanoscale Res. Lett. 2014, 9, 668.
[23]
Yang, G. B.; Phua, S. Z. F.; Bindra, A. K.; Zhao, Y. L. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater., 2019, 31, 1805730.
[24]
Mustoe, T. A.; Pierce, G. F.; Thomason, A.; Gramates, P.; Sporn, M. B.; Deuel, T. F. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science 1987, 237, 1333-1337.
Nano Research
Pages 373-379
Cite this article:
Pan Z, Zhang K-R, Gao H-L, et al. Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Research, 2020, 13(2): 373-379. https://doi.org/10.1007/s12274-020-2619-x
Topics:

817

Views

36

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 21 July 2019
Revised: 17 December 2019
Accepted: 21 December 2019
Published: 17 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return