AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation

Fantao KongYu QiaoChaoqi ZhangXiaohong FanAiguo Kong( )Yongkui Shan( )
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
Show Author Information

Graphical Abstract

Abstract

Developing the highly efficient and durable non-precious metal electrocatalysts by taking advantage of inexpensive and abundant resources is of paramount importance for the widespread application of energy conversion and storage techniques such as fuel cells and metal-air batteries. Herein, the sponge-like unadulterated carbontube-graphene complexes (D/G-CTs-1,000) with multifarious intrinsic defect active sites are fabricated by boric acid-hydrothermal and pyrolysis treatments. The close contact or juncture between open nanotubes and few-layer graphene in D/G-CTs-1,000 constructs the hierarchical networks with plentiful channels, the larger surface area and outstanding conductivity. As a result, the as-prepared D/G-CTs-1,000 electrocatalyst exhibits an excellent trifunctional electrocatalytic performance for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The primary Zn-air batteries and overall water splitting system using D/G-CTs-1,000 as the electrode materials delivers higher power density outperforming the advanced Pt/C-based batteries and the overall water splitting performance comparable to those using the non-precious metal/carbon-based materials as electrode. This work provides a universal and efficient synthetic strategy to produce the unadulterated carbons with high activity and long-time durability as trifunctional electrocatalysts and promote the widespread applications of metal-free electrocatalysts in sustainable energy conversion technology.

Electronic Supplementary Material

Download File(s)
12274_2020_2622_MOESM2_ESM.pdf (2.6 MB)

References

[1]
Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
[2]
Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.
[3]
Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. 2019, 131, 3899-3904.
[4]
Yu, J. Y.; Li, G. X.; Liu, H.; Zeng, L. L.; Zhao, L. L.; Jia, J.; Zhang, M. Y.; Zhou, W. J.; Liu, H.; Hu, Y. Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. 2019, 6, 1901458.
[5]
Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29-43.
[6]
Xu, H. M.; Ci, S. Q.; Ding, Y. C.; Wang, G. X.; Wen, Z. H. Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J. Mater. Chem. A 2019, 7, 8006-8029.
[7]
Zhang, J.; Sun, Y. M.; Zhu, J. W.; Kou, Z. K.; Hu, P.; Liu, L.; Li, S. Z.; Mu, S. C.; Huang, Y. H. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 2018, 52, 307-314.
[8]
Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163-173.
[9]
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
[10]
Wang, X. Q.; He, J. R.; Yu, B.; Sun, B. C.; Yang, D. X.; Zhang, X. J.; Zhang, Q. H.; Zhang, W. L.; Gu, L.; Chen, Y. F. CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 258, 117996.
[11]
Zhou, W. J.; Lu, J.; Zhou, K.; Yang, L. J.; Ke, Y. T.; Tang, Z. H.; Chen, S. W. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 2016, 28, 143-150.
[12]
Zhou, Y. C.; Leng, Y. H.; Zhou, W. J.; Huang, J. L.; Zhao, M. W.; Zhan, J.; Feng, C. H.; Tang, Z. H.; Chen, S. W.; Liu, H. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 2015, 16, 357-366.
[13]
Cai, P. W.; Li, Y.; Wang, G. X.; Wen, Z. H. Alkaline-acid Zn-H2O fuel cell for the simultaneous generation of hydrogen and electricity. Angew. Chem. 2018, 130, 3974-3979.
[14]
Kong, F. T.; Fan, X. H.; Kong, A. G.; Zhou, Z. Q.; Zhang, X. Y.; Shan, Y. K. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 2018, 28, 1803973.
[15]
Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. M. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 2019, 31, 1806403.
[16]
Lu, Y. J.; Hou, W. Q.; Yang, D. X.; Chen, Y. F. CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta 2019, 307, 543-552.
[17]
Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.
[18]
Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317-328.
[19]
Wang, H. Q.; Wang, X. Q.; Yang, D. X.; Zheng, B. J.; Chen, Y. F. Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J. Power Sources 2018, 400, 232-241.
[20]
Hu, Y.; Yu, B.; Li, W. X.; Ramadoss, M.; Chen, Y. F. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. Nanoscale 2019, 11, 4876-4884.
[21]
Lu, N.; Wang, L. Q.; Lv, M.; Tang, Z. S.; Fan, C. H. Graphene-based nanomaterials in biosystems. Nano Res. 2019, 12, 247-264.
[22]
Zhang, M. T.; Chen, J. X.; Li, H.; Cai, P. W.; Li, Y.; Wen, Z. H. Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy 2019, 61, 576-583.
[23]
Yan, X. C.; Jia, Y.; Odedairo, T.; Zhao, X. J.; Jin, Z.; Zhu, Z. H.; Yao, X. D. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem. Commun. 2016, 52, 8156-8159.
[24]
Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104-140.
[25]
Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.
[26]
Liu, L. Z.; Zeng, G.; Chen, J. X.; Bi, L. L.; Dai, L. M.; Wen, Z. H. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 2018, 49, 393-402.
[27]
Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.
[28]
Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285-297.
[29]
Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Catalytic nanocarbons: Defect engineering and surface functionalization of nanocarbons for metal-free catalysis (Adv. Mater. 13/2019). Adv. Mater. 2019, 31, 1970096.
[30]
Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Li, R. J.; Cheng, T. T.; Kong, A. G.; Shan, Y. K. Bimetallic Ni-Co composites anchored on a wool ball-like carbon framework as high-efficiency bifunctional electrodes for rechargeable Zn-air batteries. Catal. Sci. Technol. 2019, 9, 3469-3481.
[31]
Fan, X. H.; Kong, F. T.; Kong, A. G.; Chen, A. L.; Zhou, Z. Q.; Shan, Y. K. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 32840-32850.
[32]
Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532-9538.
[33]
Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.
[34]
Sun, T.; Zhang, G. Q.; Xu, D.; Lian, X.; Li, H. X.; Chen, W.; Su, C. L. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215-238.
[35]
Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628-7658.
[36]
Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 2018, 9, 3819.
[37]
Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845-6851.
[38]
Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 2015, 17, 16733-16743.
[39]
Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[40]
Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707-6712.
[41]
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
[42]
Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112-1119.
[43]
Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192-8195.
[44]
Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res. 2018, 11, 1905-1916.
[45]
Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1702545.
[46]
Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 2011, 4, 2826-2830.
[47]
Fan, L. Z.; Qiao, S. Y.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim. Acta 2013, 105, 299-304.
[48]
Fan, L. Z.; Liu, J. L.; Ud-Din, R.; Yan, X. Q.; Qu, X. H. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. Carbon 2012, 50, 3724-3730.
[49]
Osborn, T. H.; Farajian, A. A. Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res. 2014, 7, 945-952.
[50]
van Tam, T.; Kang, S. G.; Babu, K. F.; Oh, E. S.; Lee, S. G.; Choi, W. M. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 10537-10543.
[51]
Cai, P. W.; Peng, X. X.; Huang, J. H.; Jia, J. C.; Hu, X.; Wen, Z. H. Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. Sci. China Chem. 2019, 62, 385-392.
[52]
Zhang, H.; Qiao, H.; Wang, H. Y.; Zhou, N.; Chen, J. J.; Tang, Y. G.; Li, J. S.; Huang, C. H. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale 2014, 6, 10235-10242.
[53]
Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688-2694.
[54]
Huang, S. Y.; Ganesan, P.; Park, S.; Popov, B. N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 2009, 131, 13898-13899.
[55]
Liu, L.; Yang, X. F.; Ma, N.; Liu, H. T.; Xia, Y. Z.; Chen, C. M.; Yang, D. J.; Yao, X. D. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small 2016, 12, 1295-1301.
[56]
Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small 2019, 15, 1902613.
[57]
Wang, H. Q.; Wang, X. Q.; Zheng, B. J.; Yang, D. X.; Zhang, W. L.; Chen, Y. F. Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting. Electrochim. Acta 2019, 318, 449-459.
[58]
Li, Y. X.; Liang, L.; Liu, C. P.; Li, Y.; Xing, W.; Sun, J. Q. Self-healing proton-exchange membranes composed of nafion-poly(vinyl alcohol) complexes for durable direct methanol fuel cells. Adv. Mater. 2018, 30, 1707146.
[59]
Li, Z. H.; Shao, M. F.; Yang, Q. H.; Tang, Y.; Wei, M.; Evans, D. G.; Duan, X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy 2017, 37, 98-107.
[60]
Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536-544.
[61]
Tong, J. H.; Ma, W. M.; Bo, L. L.; Li, T.; Li, W. Y.; Li, Y. L.; Zhang, Q. Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn-air batteries, and water-splitting electrolyzers. J. Power Sources 2019, 441, 227166.
[62]
Ma, Z.; Wang, K. X.; Qiu, Y. F.; Liu, X. Z.; Cao, C. Y.; Feng, Y. J.; Hu, P. A. Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 2018, 143, 43-55.
[63]
Han, H. J.; Chao, S. J.; Bai, Z. Y.; Wang, X. B.; Yang, X. L.; Qiao, J. L.; Chen, Z. W.; Yang, L. Metal-organic-framework-derived Co nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc-air batteries. ChemElectroChem 2018, 5, 1868-1873.
[64]
Wu, M. C.; Li, C. L.; Liu, R. Freestanding 1D hierarchical porous Fe-N-doped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. Energy Technol. 2019, 7, 1800790.
[65]
Li, T. T.; Lu, Y. X.; Zhao, S. S.; Gao, Z. D.; Song, Y. Y. Co3O4-doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 3730-3737.
[66]
Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 2016, 19, 373-381.
[67]
Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.
[68]
Zhang, X. Y.; Liu, J. X.; Qiao, Y.; Kong, A. G.; Li, R. J.; Shan, Y. K. Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries. Electrochim. Acta 2019, 320, 134593.
[69]
Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.
[70]
Meng, T.; Hao, Y. N.; Zheng, L. R.; Cao, M. H. Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn-air batteries. Nanoscale 2018, 10, 14613-14626.
[71]
Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614-8618.
[72]
Wang, B.; Xu, L.; Liu, G. P.; Zhang, P. F.; Zhu, W. S.; Xia, J. X.; Li, H. M. Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. J. Mater. Chem. A 2017, 5, 20170-20179.
[73]
Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431-5441.
[74]
Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281-2287.
Nano Research
Pages 401-411
Cite this article:
Kong F, Qiao Y, Zhang C, et al. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Research, 2020, 13(2): 401-411. https://doi.org/10.1007/s12274-020-2622-2
Topics:

819

Views

37

Crossref

N/A

Web of Science

33

Scopus

7

CSCD

Altmetrics

Received: 23 October 2019
Revised: 29 November 2019
Accepted: 21 December 2019
Published: 27 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return