AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM

Kai Yang1,§Langlang Jia1,§Xinhua Liu2Zijian Wang1Yan Wang1Yiwei Li1Haibiao Chen1Billy Wu2Luyi Yang1( )Feng Pan1( )
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK

§ Kai Yang and Langlang Jia contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Graphite as a positive electrode material of dual ion batteries (DIBs) has attracted tremendous attentions for its advantages including low lost, high working voltage and high energy density. However, very few literatures regarding to the real-time observation of anion intercalation behavior and surface evolution of graphite in DIBs have been reported. Herein, we use in situ atomic force microscope (AFM) to directly observe the intercalation/de-intercalation processes of PF6- in graphite in real time. First, by measuring the change in the distance between graphene layers during intercalation, we found that PF6- intercalates in one of every three graphite layers and the intercalation speed is measured to be 2 μm·min-1. Second, graphite will wrinkle and suffer structural damages at high voltages, along with severe electrolyte decomposition on the surface. These findings provide useful information for further optimizing the capacity and the stability of graphite anode in DIBs.

Electronic Supplementary Material

Download File(s)
12274_2020_2623_MOESM1_ESM.pdf (3.4 MB)

References

[1]
Wang, M.; Tang, Y. B. A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 2018, 8, 1703320.
[2]
Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35-53.
[3]
Zhou, Z. L.; Li, N.; Yang, Y. Z.; Chen, H. S.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater. 2018, 8, 1801439.
[4]
Placke, T.; Heckmann, A.; Schmuch, R.; Meister, P.; Beltrop, K.; Winter, M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2018, 2, 2528-2550.
[5]
Gao, J. C.; Tian, S. F.; Qi, L.; Wang, H. Y. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta 2015, 176, 22-27.
[6]
Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 2018, 9, 4469.
[7]
Qi, X.; Blizanac, B.; DuPasquier, A.; Meister, P.; Placke, T.; Oljaca, M.; Li, J.; Winter, M. Investigation of PF6- and TFSI- anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 25306-25313.
[8]
Wang, S.; Jiao, S. Q.; Tian, D. H.; Chen, H. S.; Jiao, H. D.; Tu, J. G.; Liu, Y. J.; Fang, D. N. A novel ultrafast rechargeable multi-ions battery. Adv. Mater. 2017, 29, 1606349.
[9]
Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 2016, 109, 276-281.
[10]
Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 2015, 51, 11892-11895.
[11]
Yu, Z. J.; Jiao, S. Q.; Li, S. J.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater. 2019, 29, 1806799.
[12]
Zhang, X. F.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Xiao, X.; Li, S. J.; Wang, M. Y.; Lei, H. P.; Tian, D. H.; Chen, H. S. et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci. 2019, 12, 1918-1927.
[13]
Placke, T.; Schmuelling, G.; Kloepsch, R.; Meister, P.; Fromm, O.; Hilbig, P.; Meyer, H. W.; Winter, M. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z. Anorg. Allg. Chem. 2014, 640, 1996-2006.
[14]
Schmuelling, G.; Placke, T.; Kloepsch, R.; Fromm, O.; Meyer, H. W.; Passerini, S.; Winter, M. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources 2013, 239, 563-571.
[15]
Gao, J. C.; Yoshio, M.; Qi, L.; Wang, H. Y. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 2015, 278, 452-457.
[16]
Li, N.; Xin, Y. D.; Chen, H. S.; Jiao, S. Q.; Jiang, H. Q.; Song, W. L.; Fang, D. N. Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem. 2019, 29, 122-128.
[17]
Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 2014, 14, 1405-1412.
[18]
Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50-56.
[19]
Lacey, S. D.; Wan, J. Y.; von Wald Cresce, A.; Russell, S. M.; Dai, J. Q.; Bao, W. Z.; Xu, K.; Hu, L. B. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 2015, 15, 1018-1024.
[20]
Liu, C.; Ye, S. In situ Atomic Force Microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. J. Phys. Chem. C 2016, 120, 25246-25255.
[21]
Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces 2015, 7, 9573-9580.
[22]
Alliata, D.; Häring, P.; Haas, O.; Kötz, R.; Siegenthaler, H. Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem. Commun. 1999, 1, 5-9.
[23]
Alliata, D.; Kötz, R.; Haas, O.; Siegenthaler, H. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte. Langmuir 1999, 15, 8483-8489.
[24]
Goss, C. A.; Brumfield, J. C.; Irene, E. A.; Murray, R. W. Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem. 1993, 65, 1378-1389.
[25]
Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. J. Power Sources 1998, 72, 53-65.
[26]
Ishihara, T.; Yokoyama, Y.; Kozono, F.; Hayashi, H. Intercalation of PF6- anion into graphitic carbon with nano pore for dual carbon cell with high capacity. J. Power Sources 2011, 196, 6956-6959.
[27]
Seel, J. A.; Dahn, J. R. Electrochemical intercalation of PF6- into graphite. J. Electrochem. Soc. 2000, 147, 892-898.
[28]
Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S. In-depth interfacial chemistry and reactivity focused investigation of lithium-imide-and lithium-imidazole-based electrolytes. ACS Appl. Mater. Interfaces 2016, 8, 16087-16100.
[29]
Märkle, W.; Tran, N.; Goers, D.; Spahr, M. E.; Novák, P. The influence of electrolyte and graphite type on the PF6- intercalation behaviour at high potentials. Carbon 2009, 47, 2727-2732.
[30]
Choo, H. S.; Kinumoto, T.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc. 2007, 154, B1017-B1023.
Nano Research
Pages 412-418
Cite this article:
Yang K, Jia L, Liu X, et al. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Research, 2020, 13(2): 412-418. https://doi.org/10.1007/s12274-020-2623-1
Topics:

730

Views

35

Crossref

N/A

Web of Science

34

Scopus

5

CSCD

Altmetrics

Received: 14 October 2019
Revised: 19 December 2019
Accepted: 22 December 2019
Published: 13 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return