AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Bio-inspired micro/nanostructures for flexible and stretchable electronics

Hongbian Li1Suye Lv1,2Ying Fang1,2,3( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
Show Author Information

Graphical Abstract

Abstract

The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired the design of next-generation electronics with advanced functionalities. This review focuses on emerging bio-inspired strategies for the development of flexible and stretchable electronics that can accommodate mechanical deformations and integrate seamlessly with biological systems. We will provide an overview of the practical considerations in the materials and structure designs of flexible and stretchable electronics. Recent progress in bio-inspired pressure/strain sensors, stretchable electrodes, mesh electronics, and flexible energy devices are then discussed, with an emphasis on their unconventional micro/nanostructure designs and advanced functionalities. Finally, current challenges and future perspectives are identified and discussed.

References

[1]
Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
[2]
Wang, J. X.; Lin, M. F.; Park, S.; Lee, P. S. Deformable conductors for human-machine interface. Mater. Today 2018, 21, 508-526.
[3]
Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz .2015, 2, 140-156.
[4]
Bao, Z. N.; Chen, X. D. Flexible and stretchable devices. Adv. Mater .2016, 28, 4177-4179.
[5]
Kim, J.; Lee, M.; Rhim, J. S.; Wang, P. L.; Lu, N. S.; Kim, D. H. Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett .2014, 4, 95-108.
[6]
Zhou, T.; Hong, G. S.; Fu, T. M.; Yang X.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. USA 2017, 114, 5894-5899.
[7]
Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev .2017, 117, 12893-12941.
[8]
Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater .2019, 1904765.
[9]
Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater .2017, 27, 1606066.
[10]
Qiu, Z. G.; Wan, Y. B.; Zhou, W. H.; Yang, J. Y.; Yang, J. L.; Huang, J.; Zhang, J. M.; Liu, Q. X.; Huang, S. Y.; Bai, N. N. et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv. Funct. Mater .2018, 28, 1802343.
[11]
Gao, B. B.; Wang, X.; Li, T.; Feng, Z. Q.; Wang, C. Y.; Gu, Z. Z. Gecko-inspired paper artificial skin for intimate skin contact and multisensing. Adv. Mater. Technol .2019, 4, 1800392.
[12]
Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q. J.; Cho, J. H. Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting e-skin. Adv. Funct. Mater .2019, 29, 1903580.
[13]
Li, T.; Luo, H.; Qin, L.; Wang, X. W.; Xiong, Z. P.; Ding, H. Y.; Gu, Y.; Liu, Z.; Zhang, T. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 2016, 12, 5042-5048.
[14]
Wan, Y. B.; Qiu, Z. G.; Hong, Y.; Wang, Y.; Zhang, J. M.; Liu, Q. X.; Wu, Z. G.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater .2018, 4, 1700586.
[15]
Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 2015, 11, 1886-1891.
[16]
Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911-14919.
[17]
Wei, Y.; Chen, S.; Lin, Y.; Yang, Z. M.; Liu, L. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 2015, 3, 9594-9602.
[18]
Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim D. H.; Chung, Y.; Cho, K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater .2016, 28, 5300-5306.
[19]
Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819.
[20]
Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045-4054.
[21]
Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; Lim, H.; Kim, S. Y.; Ko, H. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014, 8, 12020-12029.
[22]
Chun, S.; Choi, I. Y.; Son, W.; Bae, G. Y.; Lee, E. J.; Kwon, H.; Jung, J.; Kim, H. S.; Kim, J. K.; Park, W. A highly sensitive force sensor with fast response based on interlocked arrays of indium tin oxide nanosprings toward human tactile perception. Adv. Funct. Mater .2018, 28, 1804132.
[23]
Cao, Y. D.; Li, T.; Gu, Y.; Luo, H.; Wang, S. Q.; Zhang, T. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small 2018, 14, 1703902.
[24]
Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot .2018, 3, eaau6914.
[25]
Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222-226.
[26]
Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater .2016, 28, 8130-8137.
[27]
Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable mxene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649-659.
[28]
Lee, J. H.; Kim, J.; Liu, D.; Guo, F. M.; Shen, X.; Zheng, Q. B.; Jeon, S.; Kim, J. K. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater .2019, 29, 1901623.
[29]
Chen, S.; Song, Y. J.; Ding, D. Y.; Ling, Z.; Xu, F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater .2018, 28, 1802547.
[30]
Lee, W. S.; Kim, D.; Park, B.; Joh, H.; Woo, H. K.; Hong, Y. K.; Kim, T.; Ha, D. H.; Oh, S. J. Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked hetero-nanocrystal solids. Adv. Funct. Mater .2019, 29, 1806714.
[31]
Miao, W. N.; Wang, D. Y.; Liu, Z. M.; Tang, J. Y.; Zhu, Z. P.; Wang, C.; Liu, H.; Wen, L.; Zheng, S.; Tian, Y. et al. Bioinspired self-healing liquid films for ultradurable electronics. ACS Nano 2019, 13, 3225-3231.
[32]
Matsuhisa, N.; Chen, X. D.; Bao, Z. N.; Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev .2019, 48, 2946-2966.
[33]
Guo, R. S.; Yu, Y.; Zeng, J. F.; Liu, X. Q.; Zhou, X. C.; Niu, L. Y.; Gao, T. T.; Li, K.; Yang, Y.; Zhou, F. et al. Biomimicking topographic elastomeric petals (e-petals) for omnidirectional stretchable and printable electronics. Adv. Sci .2015, 2, 1400021.
[34]
Wu, C. Y.; Tang, X.; Gan, L.; Li, W. F.; Zhang, J.; Wang, H.; Qin, Z. Y.; Zhang, T.; Zhou, T. T.; Huang, J. et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film. ACS Appl. Mater. Interfaces 2019, 11, 20535-20544.
[35]
Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater .2017, 29, 1603382.
[36]
Liu, Z. Y.; Wang, H.; Huang, P. G.; Huang, J. P.; Zhang, Y.; Wang, Y. Y.; Yu, M.; Chen, S. X.; Qi, D. P.; Wang, T. et al. Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation. Adv. Mater .2019, 31, 1901360.
[37]
Wang, Y.; Gong, S.; Gómez, D.; Ling, Y. Z.; Yap, L. W.; Simon, G. P.; Cheng, W. L. Unconventional Janus properties of enokitake-like gold nanowire films. ACS Nano 2018, 12, 8717-8722.
[38]
Wang, Y.; Gong, S.; Wang, S. J.; Yang, X. Y.; Ling, Y. Z.; Yap, L. W.; Dong, D. S.; Simon, G. P.; Cheng, W. L. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano 2018, 12, 9742-9749.
[39]
Zhu, B. W.; Gong, S.; Lin, F.; Wang, Y.; Ling, Y. Z.; An, T.; Cheng, W. L. Patterning vertically grown gold nanowire electrodes for intrinsically stretchable organic transistors. Adv. Electron. Mater .2019, 5, 1800509.
[40]
Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A Review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188-1205.
[41]
Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 2016, 10, 9446-9455.
[42]
Liu, N.; Chortos, A.; Lei, T.; Jin, L. H.; Kim, T. R.; Bae, W. G.; Zhu, C. X.; Wang, S. H.; Pfattner, R.; Chen, X. Y.; Sinclair, R.; Bao, Z. N. Ultratransparent and stretchable graphene electrodes. Sci. Adv .2017, 3, e1700159.
[43]
Han, J.; Lee, J. Y.; Lee, J.; Yeo, J. S. Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater .2018, 30, 1704626.
[44]
Yan, S.; Zhang, G. Z.; Jiang, H. Y.; Li, F. B.; Zhang, L.; Xia, Y. H.; Wang, Z. S.; Wu, Y. K.; Li, H. J. Highly stretchable room-temperature self-healing conductors based on wrinkled graphene films for flexible electronics. ACS Appl. Mater. Interfaces 2019, 11, 10736-10744.
[45]
Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett .2019, 19, 6592-6599.
[46]
Wang, Z. Y.; Liu, X.; Shen, X.; Han, N. M.; Wu, Y.; Zheng, Q. B.; Jia, J. J.; Wang, N.; Kim, J. K. An ultralight graphene honeycomb sandwich for stretchable light-emitting displays. Adv. Funct. Mater .2018, 28, 1707043.
[47]
Poldrack, R. A.; Farah, M. J. Progress and challenges in probing the human brain. Nature 2015, 526, 371-379.
[48]
Kim, G. H.; Kim, K.; Lee, E.; An, T.; Choi, W.; Lim, G.; Shin, J. H. Recent progress on microelectrodes in neural interfaces. Materials 2018, 11, 1995.
[49]
Hong, G. S.; Yang, X.; Zhou, T.; Lieber, C. M. Mesh electronics: A new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol .2018, 50, 33-41.
[50]
Im, C.; Seo, J. M. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett .2016, 6, 104-112.
[51]
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol .2015, 10, 629-636.
[52]
Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 2016, 13, 875-882.
[53]
Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater .2019, 18, 510-517.
[54]
Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater .2019, 9, 1802906.
[55]
Seol, M. L.; Woo, J. H.; Lee, D.; Im, H.; Hur, J.; Choi, Y. K. Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small 2014, 10, 3887-3894.
[56]
Bui, V. T.; Zhou, Q. T.; Kim, J. N.; Oh, J. H.; Han, K. W.; Choi, H. S.; Kim, S. W.; Oh, I. K. Treefrog toe pad-inspired micropatterning for high-power triboelectric nanogenerator. Adv. Funct. Mater .2019, 29, 1901638.
[57]
Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018, 12, 3964-3974.
[58]
Chen, H. T.; Song, Y.; Guo, H.; Miao, L. M.; Chen, X. X.; Su, Z. M.; Zhang, H. X. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 2018, 51, 496-503.
[59]
Choi, D.; Kim, D. W.; Yoo, D.; Cha, K. J.; La, M.; Kim, D. S. Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy 2017, 36, 250-259.
Nano Research
Pages 1244-1252
Cite this article:
Li H, Lv S, Fang Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Research, 2020, 13(5): 1244-1252. https://doi.org/10.1007/s12274-020-2628-9
Topics:

814

Views

44

Crossref

N/A

Web of Science

44

Scopus

8

CSCD

Altmetrics

Received: 07 November 2019
Revised: 03 December 2019
Accepted: 29 December 2019
Published: 18 January 2020
© Tsinghua University Press 2020
Return