Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Self-magnetic-attracted NixFe(1-x)@NixFe(1-x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction

Zuobo YangXin Liang()
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A facile self-magnetic-attracted approach was developed for highly active and stable NixFe(1-x)@NixFe(1-x)O/NF electrocatalysts towards alkaline oxygen evolution reaction. Firstly, a low-cost and scalable synthesis method was developed to synthesis 4-5 nm hydrophilic NixFe(1-x)@NixFe(1-x)O core-shell nanocrystals with superparamagnetism. Then, these NixFe(1-x)@NixFe(1-x)O nanoparticles (NPs) could be easily supported on nickel foam without any binders or additives. Optimized by the composition effect, the Ni0.7Fe0.3@Ni0.7Fe0.3O/NF exhibits excellent activity for oxygen evolution reaction (OER), requires only 215 mV at 10 mA·cm-2 and 260 mV at 100 mA·cm-2, with a Tafel slope of 47.4 mV·dec-1 in 1.0 M KOH. Moreover, the underlying mechanism was carefully studied by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectra (XANES) analysis and density functional theory (DFT) calculations. Due to the self-magnetic attraction, the catalyst shows outstanding stability throughout the electrocatalysis, surpassing than most self-supported catalysts. This work provides a new strategy for the construction of highly active and stable OER electrocatalysts, the nearly monodisperse magnetic NixFe(1-x)@NixFe(1-x)O NPs also serve an ideal building block for fundamental research of nickel-iron based catalyst.

Electronic Supplementary Material

Download File(s)
12274_2020_2630_MOESM1_ESM.pdf (7.9 MB)

References

[1]
Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005-7013.
[2]
Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820-1827.
[3]
Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096-2105.
[4]
Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264-273.
[5]
Zhou, D. J.; Jia, Y.; Duan, X. X.; Tang, J. L.; Xu, J.; Liu, D.; Xiong, X. Y.; Zhang, J. M.; Luo, J.; Zheng, L. R. et al. Breaking the symmetry: Gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy 2019, 60, 661-666.
[6]
Luo, M.; Cai, Z.; Wang, C.; Bi, Y. M.; Qian, L.; Hao, Y. C.; Li, L.; Kuang, Y.; Li, Y. P.; Lei, X. D. et al. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res. 2017, 10, 1732-1739.
[7]
Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377-384.
[8]
Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60-63.
[9]
Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.
[10]
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[11]
Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392-9396.
[12]
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2019, 1, e1806326.
[13]
Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16, 1805-1813.
[14]
Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 2013, 13, 2947-2951.
[15]
Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950-3955.
[16]
Mohamed, R.; Cheng, X.; Fabbri, E.; Levecque, P.; Kötz, R.; Conrad, O.; Schmidt, T. J. Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity. J. Electrochem. Soc. 2015, 162, F579-F586.
[17]
Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77-85.
[18]
Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.
[19]
Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 2016, 19, 265-273.
[20]
Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337-7347.
[21]
Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 2018, 11, 1294-1300.
[22]
Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118-18125.
[23]
Wang, Y. Q.; Li, Y. M.; Ding, L. P.; Chen, Z.; Ong, A.; Lu, W. H.; Herng, T. S.; Li, X. W.; Ding, J. NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. J. Mater. Chem. A 2019, 7, 18816-18822.
[24]
Pi, Y. C.; Shao, Q.; Wang, P. T.; Lv, F.; Guo, S. J.; Guo, J.; Huang, X. Q. Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 4502-4506.
[25]
Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.
[26]
Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.
[27]
Miao, M.; Hou, R. Z.; Qi, R. J.; Yan, Y.; Gong, L. Q.; Qi, K.; Liu, H. F.; Xia, B. Y. Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18925-18931.
[28]
Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.
[29]
Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. L. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 2019, 5, 558-568.
[30]
Zhang, C.; Chen, B. H.; Mei, D. H.; Liang, X. The OH--driven synthesis of Pt-Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 5475-5481.
[31]
García-Muelas, R.; Li, Q.; López, N. Density functional theory comparison of methanol decomposition and reverse reactions on metal surfaces. ACS Catal. 2015, 5, 1027-1036.
[32]
Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; Von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486-1491.
[33]
Huang, J. Z.; Han, J. C.; Wang, R.; Zhang, Y. Y.; Wang, X. J.; Zhang, X. H.; Zhang, Z. H.; Zhang, Y. M.; Song, B.; Jin, S. Improving electrocatalysts for oxygen evolution using NixFe3-xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett. 2018, 3, 1698-1707.
Nano Research
Pages 461-466
Cite this article:
Yang Z, Liang X. Self-magnetic-attracted NixFe(1-x)@NixFe(1-x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Research, 2020, 13(2): 461-466. https://doi.org/10.1007/s12274-020-2630-2
Topics:
Metrics & Citations  
Article History
Copyright
Return