AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing

Hao Qiu1,2Fang Pu1( )Zhengwei Liu1,3Xuemeng Liu1,2Kai Dong1Chaoqun Liu1Jinsong Ren1,2( )Xiaogang Qu1,2( )
State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
University of Chinese Academy of Sciences, Beijing 100039, China
Show Author Information

Graphical Abstract

Abstract

Artificial enzymes have provided great antimicrobial activity to combat wound infection. However, the lack of tissue repair capability compromised their treatment effect. Therefore, development of novel artificial enzyme concurrently with the excellent antibacterial activity and the property of promoting wound healing are required. Here, we demonstrated the hydrogel-based artificial enzyme composed of copper and amino acids possessed intrinsic peroxidase-like catalytic activity, which could combat wound pathogen effectively and accelerate wound healing by stimulating angiogenesis and collagen deposition. Furthermore, the system possesses good biocompatibility for practical application. The synergic effect of the hydrogel-based artificial enzyme promises the system as a new paradigm in bacteria-infected wound healing therapy.

Electronic Supplementary Material

Download File(s)
12274_2020_2636_MOESM1_ESM.pdf (2.5 MB)

References

[1]
Broughton II, G.; Janis, J. E.; Attinger, C. E. The basic science of wound healing. Plast. Reconstr. Surg. 2006, 117, 12S-34S.
[2]
Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.
[3]
Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314-321.
[4]
Ren, X. Y.; Yang, C. Y.; Zhang, L.; Li, S.; Shi, S.; Wang, R.; Zhang, X.; Yue, T. L.; Sun, J.; Wang, J. L. Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 2019, 11, 11830-11838.
[5]
Zhao, Y. Y.; Chen, Z. L.; Chen, Y. F.; Xu, J.; Li, J. H.; Jiang, X. Y. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J. Am. Chem. Soc. 2013, 135, 12940-12943.
[6]
Fan, Z. J.; Liu, B.; Wang, J. Q.; Zhang, S. Y.; Lin, Q. Q.; Gong, P. W.; Ma, L. M.; Yang, S. R. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 2014, 24, 3933-3943.
[7]
Ran, X.; Du, Y.; Wang, Z. Z.; Wang, H.; Pu, F.; Ren, J. S.; Qu, X. G. Hyaluronic acid-templated Ag nanoparticles/graphene oxide composites for synergistic therapy of bacteria infection. ACS Appl. Mater. Interfaces 2017, 9, 19717-19724.
[8]
Lu, L. H.; Liu, L. J.; Chao, W. C.; Zhong, H. J.; Wang, M. D.; Chen, X. P.; Lu, J. J.; Li, R. N.; Ma, D. L.; Leung, C. H. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity. Sci. Rep. 2015, 5, 14544.
[9]
Zhong, H. J.; Lu, L. H.; Leung, K. H.; Wong, C. C. L.; Peng, C.; Yan, S. C.; Ma, D. L.; Cai, Z. W.; David Wang, H. M.; Leung, C. H. An iridium(III)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem. Sci. 2015, 6, 5400-5408.
[10]
Wang, R.; Li, Q.; Chi, B.; Wang, X. Q.; Xu, Z.; Xu, Z. Q.; Chen, S.; Xu, H. Enzyme-induced dual-network ε-poly-L-lysine-based hydrogels with robust self-healing and antibacterial performance. Chem. Commun. 2017, 53, 4803-4806.
[11]
Lai, W. F.; Rogach, A. L. Hydrogel-based materials for delivery of herbal medicines. ACS Appl. Mater. Interfaces 2017, 9, 11309-11320.
[12]
Li, Y.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Zheng, Y. F.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 2018, 28, 1800299.
[13]
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.
[14]
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[15]
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.
[16]
Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem., Int. Ed. 2007, 46, 4285-4289.
[17]
Qiu, H.; Pu, F.; Ran, X.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Nanozyme as artificial receptor with multiple readouts for pattern recognition. Anal. Chem. 2018, 90, 11775-11779.
[18]
Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural'skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.
[19]
Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097-1105.
[20]
Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789-799.
[21]
Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412-5419.
[22]
Vázquez-González, M.; Liao, W. C.; Cazelles, R.; Wang, S.; Yu, X.; Gutkin, V.; Willner, I. Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 2017, 11, 3247-3253.
[23]
Qiu, H.; Pu, F.; Liu, Z. W.; Deng, Q. Q.; Sun, P. P.; Ren, J. S.; Qu, X. G. Depriving bacterial adhesion-related molecule to inhibit biofilm formation using CeO2-decorated metal-organic frameworks. Small 2019, 15, 1902522.
[24]
Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530-535.
[25]
Xu, Z. B.; Qiu, Z. Y.; Liu, Q.; Huang, Y. X.; Li, D. D.; Shen, X. G.; Fan, K. L.; Xi, J. Q.; Gu, Y. H.; Tang, Y. et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713.
[26]
Gao, L. Z.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 2014, 6, 2588-2593.
[27]
Gao, L. Z.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P. C.; Cormode, D. P.; Koo, H. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 2016, 101, 272-284.
[28]
Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000-11011.
[29]
Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202-6210.
[30]
Borkow, G.; Gabbay, J.; Dardik, R.; Eidelman, A. I.; Lavie, Y.; Grunfeld, Y.; Ikher, S.; Huszar, M.; Zatcoff, R. C.; Marikovsky, M. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010, 18, 266-275.
[31]
Kornblatt, A. P.; Nicoletti, V. G.; Travaglia, A. The neglected role of copper ions in wound healing. J. Inorg. Biochem. 2016, 161, 1-8.
[32]
Gopal, A.; Kant, V.; Gopalakrishnan, A.; Tandan, S. K.; Kumar, D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur. J. Pharmacol. 2014, 731, 8-19.
[33]
Brewer, G. J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 2010, 23, 319-326.
[34]
Cady, N. C.; Behnke, J. L.; Strickland, A. D. Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv. Funct. Mater. 2011, 21, 2506-2514.
[35]
Ma, J. X.; Zhu, W. H.; Min, D. Y.; Wang, Z. G.; Zhou, X. F. Preparation of antibacterial self-reinforced zinc oxide-cellulose composite by the synthesis of ZnO in partially dissolved cellulose. Cellulose 2016, 23, 3199-3208.
[36]
Xiao, J. S.; Chen, S. Y.; Yi, J.; Zhang, H. F.; Ameer, G. A. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 2017, 27, 1604872.
[37]
Xiao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; Xiao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 2018, 12, 1023-1032.
[38]
Li, J. L.; Xing, R. R.; Bai, S.; Yan, X. H. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 2019, 15, 1704-1715.
[39]
Pu, F.; Ren, J. S. Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid. Nanotechnology 2013, 24, 375603.
[40]
Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849-857.
[41]
Pu, F.; Liu, X.; Xu, B. L.; Ren, J. S.; Qu, X. G. Miniaturization of metal-biomolecule frameworks based on stereoselective self-assembly and potential application in water treatment and as antibacterial agents. Chem.—Eur. J. 2012, 18, 4322-4328.
[42]
Li, Y. X.; Zou, Q. L.; Yuan, C. Q.; Li, S. K.; Xing, R. R.; Yan, X. H. Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin. Angew. Chem., Int. Ed. 2018, 57, 17084-17088.
[43]
Ji, W.; Yuan, C. Q.; Zilberzwige-Tal, S.; Xing, R. R.; Chakraborty, P.; Tao, K.; Gilead, S.; Yan, X. H.; Gazit, E. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 2019, 13, 7300-7309.
[44]
Imaz, I.; Rubio-Martínez, M.; Saletra, W. J.; Amabilino, D. B.; Maspoch, D. Amino acid based metal-organic nanofibers. J. Am. Chem. Soc. 2009, 131, 18222-18223.
[45]
Zhang, Z. Z.; He, T.; Yuan, M. Y.; Shen, R. J.; Deng, L.; Yi, L. Z.; Sun, Z. F.; Zhang, Y. The in situ synthesis of Ag/amino acid biopolymer hydrogels as mouldable wound dressings. Chem. Commun. 2015, 51, 15862-15865.
[46]
Qin, Y.; Chen, L. L.; Pu, W.; Liu, P.; Liu, S. X.; Li, Y.; Liu, X. L.; Lu, Z. X.; Zheng, L. Y.; Cao, Q. E. A hydrogel directly assembled from a copper metal-organic polyhedron for antimicrobial application. Chem. Commun. 2019, 55, 2206-2209.
[47]
Wang, Z. G.; Wang, R.; Xu, P. B.; Yu, J.; Liu, L.; Fan, Y. M. Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions. Cellulose 2019, 26, 1221-1230.
[48]
Salick, D. A.; Pochan, D. J.; Schneider, J. P. Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv. Mater. 2009, 21, 4120-4123.
[49]
Irwansyah, I.; Li, Y. Q.; Shi, W. X.; Qi, D. P.; Leow, W. R.; Tang, M. B. Y.; Li, S. Z.; Chen, X. D. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 2015, 27, 648-654.
[50]
Schwartz, V. B.; Thétiot, F.; Ritz, S.; Pütz, S.; Choritz, L.; Lappas, A.; Förch, R.; Landfester, K.; Jonas, U. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. 2012, 22, 2376-2386.
Nano Research
Pages 496-502
Cite this article:
Qiu H, Pu F, Liu Z, et al. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Research, 2020, 13(2): 496-502. https://doi.org/10.1007/s12274-020-2636-9
Topics:

869

Views

56

Crossref

N/A

Web of Science

55

Scopus

7

CSCD

Altmetrics

Received: 29 November 2019
Revised: 29 November 2019
Accepted: 01 January 2020
Published: 17 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return