AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Niobium doping induced mirror twin boundaries in MBE grown WSe2 monolayers

Bo Wang1,2Yipu Xia3Junqiu Zhang3Hannu-Pekka Komsa4( )Maohai Xie3Yong Peng1Chuanhong Jin2,1,5( )
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310024, China
Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
Department of Applied Physics, Aalto University, 00076 Aalto, Finland
Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411201, China
Show Author Information

Graphical Abstract

Abstract

Mirror twin boundary (MTB) brings unique one-dimensional (1D) physics and properties into two-dimensional (2D) transition metal dichalcogenides (TMDCs), but they were rarely observed in non-Mo-based TMDCs. Herein, by post-growth Nb doping, high density 4|4E-W and 4|4P-Se mirror twin boundaries (MTBs) were introduced into molecular beam epitaxy (MBE) grown WSe2 monolayers. Of them, 4|4E-W MTB with a novel structure was discovered experimentally for the first time, while 4|4P-Se MTBs present a random permutations of W and Nb, forming a 1D alloy system. Comparison between the doped and non-doped WSe2 confirmed that Nb dopants are essential for MTB formation. Furthermore, quantitative statistics reveal the areal density of MTBs is directly proportional to the concentration of Nb dopants. To unravel the injection pathway of Nb dopants, first-principles calculations about a set of formation energies for excess Nb atoms with different configurations were conducted, based on which a model explaining the origin of MTBs introduced by excess metal was built. We conclude that the formation of MTBs is mainly driven by the collective evolution of excess Nb atoms introduced into the lattice of host WSe2 crystal and subsequent displacement of metal atoms (W or Nb). This study provides a novel way to tailor the MTBs in 2D TMDC materials via proper metal doping and presents new opportunities for exploring the intriguing properties.

Electronic Supplementary Material

Download File(s)
12274_2020_2639_MOESM1_ESM.pdf (4.1 MB)

References

[1]
Novoselov, K. S.; Neto, A. H. C. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Phys. Scr. 2012, 2012, 014006.
[2]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[3]
Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[4]
Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494-500.
[5]
Zhang, Q.; Ren, Z. M.; Wu, N.; Wang, W. J.; Gao, Y. J.; Zhang, Q. Q.; Shi, J.; Zhuang, L.; Sun, X. N.; Fu, L. Nitrogen-doping induces tunable magnetism in ReS2. npj 2D Mater. Appl. 2018, 2, 22.
[6]
Andriotis, A. N.; Menon, M. Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 2014, 90, 125304.
[7]
Coelho, P. M.; Komsa, H. P.; Lasek, K.; Kalappattil, V.; Karthikeyan, J.; Phan, M. H.; Krasheninnikov, A. V.; Batzill, M. Room-temperature ferromagnetism in MoTe2 by post-growth incorporation of vanadium impurities. Adv. Electron. Mater. 2019, 5, 1900044.
[8]
Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.
[9]
Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elías, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442-449.
[10]
Xia, Y. P.; Wang, B.; Zhang, J. Q.; Feng, Y.; Li, B.; Ren, X. B.; Tian, H.; Xu, J. P.; Ho, W.; Xu, H. et al. Hole doping in epitaxial MoSe2 monolayer by nitrogen plasma treatment. 2D Mater. 2018, 5, 041005.
[11]
Xia, Y. P.; Zhang, J. Q.; Yu, Z. B.; Jin, Y. J.; Tian, H.; Feng, Y.; Li, B.; Ho, W.; Liu, C.; Xu, H. et al. A shallow acceptor of phosphorous doped in MoSe2 monolayer. Adv. Electron. Mater., in press, .
[12]
Hong, J. H.; Wang, C.; Liu, H. J.; Ren, X. B.; Chen, J. L.; Wang, G. Y.; Jia, J. F.; Xie, M. H.; Jin, C. H.; Ji, W. et al. Inversion domain boundary induced stacking and bandstructure diversity in bilayer MoSe2. Nano Lett. 2017, 17, 6653-6660.
[13]
McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880-2888.
[14]
Jolie, W.; Murray, C.; Weiß, P. S.; Hall, J.; Portner, F.; Atodiresei, N.; Krasheninnikov, A. V.; Busse, C.; Komsa, H. P.; Rosch, A. et al. Tomonaga-Luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 2019, 9, 011055.
[15]
Xia, Y. P.; Zhang, J. Q.; Jin, Y. J.; Ho, W.; Xu, H.; Xie, M. H. Quantum confined Tomonaga-Luttinger liquid in MoSe2 twin domain boundaries. arXiv:1908.09259 2019.
[16]
Ma, Y. J.; Diaz, H. C.; Avila, J.; Chen, C. Y.; Kalappattil, V.; Das, R.; Phan, M. H.; Čadež, T.; Carmelo, J. M. P.; Asensio, M. C. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 2017, 8, 14231.
[17]
Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751-756.
[18]
Batzill, M. Mirror twin grain boundaries in molybdenum dichalcogenides. J. Phys.: Condens. Matter 2018, 30, 493001.
[19]
Coelho, P. M.; Komsa, H. P.; Coy Diaz, H.; Ma, Y. J.; Krasheninnikov, A. V.; Batzill, M. Post-synthesis modifications of two-dimensional MoSe2 or MoTe2 by incorporation of excess metal atoms into the crystal structure. ACS Nano 2018, 12, 3975-3984.
[20]
Jiao, L.; Liu, H. J.; Chen, J. L.; Yi, Y.; Chen, W. G.; Cai, Y.; Wang, J. N.; Dai, X. Q.; Wang, N.; Ho, W. K. et al. Molecular-beam epitaxy of monolayer MoSe2: Growth characteristics and domain boundary formation. New J. Phys. 2015, 17, 053023.
[21]
Ma, Y. J.; Kolekar, S.; Coy Diaz, H.; Aprojanz, J.; Miccoli, I.; Tegenkamp, C.; Batzill, M. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy. ACS Nano 2017, 11, 5130-5139.
[22]
Diaz, H. C.; Ma, Y. J.; Chaghi, R.; Batzill, M. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. Appl. Phys. Lett. 2016, 108, 191606.
[23]
Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.
[24]
Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.
[25]
Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148-152.
[26]
Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoglu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141-147.
[27]
Komsa, H. P.; Krasheninnikov, A. V. Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries. Adv. Electron. Mater. 2017, 3, 1600468.
[28]
Lin, Y. C.; Björkman, T.; Komsa, H. P.; Teng, P. Y.; Yeh, C. H.; Huang, F. S.; Lin, K. H.; Jadczak, J.; Huang, Y. S.; Chiu, P. W. et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 2015, 6, 6736.
[29]
Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis; Springer: New York, 2011.
[30]
Komsa, H. P.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652-3656.
[31]
Schneemeyer, L. F.; Sienko, M. J. Crystal data for mixed-anion molybdenum dichalcogenides. Inorg. Chem. 1980, 19, 789-791.
[32]
Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.
[33]
Karthikeyan, J.; Komsa, H. P.; Batzill, M.; Krasheninnikov, A. V. Which transition metal atoms can be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 2019, 19, 4581-4587.
[34]
Han, D.; Ming, W. M.; Xu, H. X.; Chen, S. Y.; Sun, D. Y.; Du, M. H. Chemical trend of transition-metal doping in WSe2. Phys. Rev. Appl. 2019, 12, 034038.
[35]
Lin, J. H.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189-5197.
[36]
Gupta, S.; Yang, J. H.; Yakobson, B. I. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 2019, 19, 408-414.
[37]
Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197-6206.
[38]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[39]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[40]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Nano Research
Pages 1889-1896
Cite this article:
Wang B, Xia Y, Zhang J, et al. Niobium doping induced mirror twin boundaries in MBE grown WSe2 monolayers. Nano Research, 2020, 13(7): 1889-1896. https://doi.org/10.1007/s12274-020-2639-6
Topics:
Part of a topical collection:

1064

Views

22

Crossref

N/A

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 21 October 2019
Revised: 24 December 2019
Accepted: 02 January 2020
Published: 26 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return