AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Excipient-free porphyrin/SN-38 based nanotheranostics for drug delivery and cell imaging

Ye Yuan1,2,§Ruonan Bo2,3,§Di Jing2,4Zhao Ma2Zhongling Wang2,5Tzu-yin Lin6Lijie Dong1Xiangdong Xue2,7( )Yuanpei Li2( )
Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento 95817, USA
School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento 95817, USA
College of Life Sciences, Northwest University, Xi’an 710069, China

§ Ye Yuan and Ruonan Bo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nanotheranostics with comprehensive diagnostic and therapeutic capabilities show exciting cancer treatment potentials. Here, we develop an excipient-free drug delivery system for cancer diagnosis as well as therapy, in which a near infra-red photosensitizer and a chemotherapeutic drug can be self-delivered without any carriers. The building block of the drug delivery system was synthesized by covalently conjugating four anticancer drugs (7-ethyl-10-hydroxy-camptothecin, SN-38) with a photosensitizer (porphyrin) via hydrolyzable ester linkage, which endows the drug delivery system with 100% active pharmaceutical ingredients, excellent imaging, and therapeutic functionalities. The conjugates can readily self-assemble into nanosheets (PS NSs) and remain stable for at least 20 days in aqueous solution. In PS NSs, fluorescence resonance energy transfer (FRET) dominates the fluorescence of SN-38 and enables to monitor the drug release fluorescently. The PS NSs also show excellent anticancer activity in vitro, due to the increased cell uptake with the synergistic effect of photodynamic therapy and chemotherapy.

Electronic Supplementary Material

Download File(s)
12274_2020_2641_MOESM1_ESM.pdf (2.6 MB)

References

[1]
Lin, S.; Xie, P. L.; Luo, M. M.; Li, Q.; Li, L.; Zhang, J. Z.; Zheng, Q. X.; Chen, H.; Nan, K. H. Efficiency against multidrug resistance by co-delivery of doxorubicin and curcumin with a legumain-sensitive nanocarrier. Nano Res. 2018, 11, 3619-3635.
[2]
Zeng, Q. Z.; Wen, H. B.; Wen, Q.; Chen, X. H.; Wang, Y. G.; Xuan, W. L.; Liang, J. S.; Wan, S. H. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 2013, 34, 4632-4642.
[3]
Zahorowska, B.; Crowe, P. J.; Yang, J. L. Combined therapies for cancer: A review of EGFR-targeted monotherapy and combination treatment with other drugs. J. Cancer Res. Clin. Oncol. 2009, 135, 1137-1148.
[4]
Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.
[5]
Guo, L. R.; Yan, D. D.; Yang, D. F.; Li, Y. L.; Wang, X. D.; Zalewski, O.; Yan, B. F.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 2014, 8, 5670-5681.
[6]
Al-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 2012, 30, 679-692.
[7]
Baxevanis, C. N.; Perez, S. A.; Papamichail, M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol., Immunother 2009, 58, 317-324.
[8]
Zhang, H.; Hollis, C. P.; Zhang, Q.; Li, T. L. Preparation and antitumor study of camptothecin nanocrystals. Int. J. Pharm. 2011, 415, 293-300.
[9]
Sun, B.; Taha, M. S.; Ramsey, B.; Torregrosa-Allen, S.; Elzey, B. D.; Yeo, Y. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals. J. Controlled Release 2016, 235, 91-98.
[10]
Lin, Z. Q.; Gao, W.; Hu, H. X.; Ma, K.; He, B.; Dai, W. B.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Zhang, Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J. Controlled Release 2014, 174, 161-170.
[11]
Yuan, Y.; He, Y. X.; Bo, R. N.; Ma, Z.; Wang, Z. L.; Dong, L. L.; Lin, T. Y.; Xue, X. D.; Li, Y. P. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018, 10, 21634-21639.
[12]
Wang, Z. J.; Li, J.; Cho, J.; Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 2014, 9, 204-210.
[13]
Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557-10566.
[14]
Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324-332.
[15]
Mikhaylov, G.; Mikac, U.; Magaeva, A. A.; Itin, V. I.; Naiden, E. P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594-602.
[16]
Li, Y. P.; Lin, T. Y.; Luo, Y.; Liu, Q. Q.; Xiao, W. W.; Guo, W. C.; Lac, D.; Zhang, H. Y.; Feng, C. H.; Wachsmann-Hogiu, S. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 2014, 5, 4712.
[17]
Yang, X. X.; Xue, X. D.; Luo, Y.; Lin, T. Y.; Zhang, H. Y.; Lac, D.; Xiao, K.; He, Y. X.; Jia, B.; Lam, K. S. et al. Sub-100 nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J. Controlled Release 2017, 261, 297-306.
[18]
Li, Y. P.; Xiao, W. W.; Xiao, K.; Berti, L.; Luo, J. T.; Tseng, H. P.; Fung, G.; Lam, K. S. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic ph values and cis-diols. Angew. Chem., Int. Ed. 2012, 51, 2864-2869.
[19]
Zhang, M.; Song, C. C.; Su, S.; Du, F. S.; Li, Z. C. Ros-activated ratiometric fluorescent polymeric nanoparticles for self-reporting drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 7798-7810.
[20]
Wang, Z. L.; Xue, X. D.; He, Y. X.; Lu, Z. W.; Jia, B.; Wu, H.; Yuan, Y.; Huang, Y.; Wang, H.; Lu, H. W. et al. Novel redox-responsive polymeric magnetosomes with tunable magnetic resonance property for in vivo drug release visualization and dual-modal cancer therapy. Adv. Funct. Mater. 2018, 28, 1802159.
[21]
Xue, X. D.; Huang, Y.; Wang, X. S.; Wang, Z. L.; Carney, R. P.; Li, X. C.; Yuan, Y.; He, Y. X.; Lin, T. Y.; Li, Y. P. Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018, 161, 203-215.
[22]
Correia, A.; Shahbazi, M. A.; Mäkilä, E.; Almeida, S.; Salonen, J.; Hirvonen, J.; Santos, H. A. Cyclodextrin-modified porous silicon nanoparticles for efficient sustained drug delivery and proliferation inhibition of breast cancer cells. ACS Appl. Mater. Interfaces 2015, 7, 23197-23204.
[23]
Sierpe, R.; Lang, E.; Jara, P.; Guerrero, A. R.; Chornik, B.; Kogan, M. J.; Yutronic, N. Gold nanoparticles interacting with β-cyclodextrin- phenylethylamine inclusion complex: A ternary system for photothermal drug release. ACS Appl. Mater. Interfaces 2015, 7, 15177-15188.
[24]
Liu, Z. H.; Jiao, Y. P.; Wang, Y. F.; Zhou, C. R.; Zhang, Z. Y. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650-1662.
[25]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 2011, 14, 67-77.
[26]
Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458-3461.
[27]
Zheng, X. H.; Li, Z. S.; Chen, L.; Xie, Z. G.; Jing, X. B. Self-assembly of porphyrin-paclitaxel conjugates into nanomedicines: Enhanced cytotoxicity due to endosomal escape. Chem.—Asian J. 2016, 11, 1780-1784.
[28]
Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal- organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[29]
Yu, B.; Goel, S.; Ni, D. L.; Ellison, P. A.; Siamof, C. M.; Jiang, D. W.; Cheng, L.; Kang, L.; Yu, F. Q.; Liu, Z. et al. Reassembly of 89Zr-labeled cancer cell membranes into multicompartment membrane-derived liposomes for PET-trackable tumor-targeted theranostics. Adv. Mater. 2018, 30, 1704934.
[30]
Cheng, Y. J.; Zhang, A. Q.; Hu, J. J.; He, F.; Zeng, X.; Zhang, X. Z. Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor targeting drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 2093-2103.
[31]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789-802.
[32]
Ragàs, X.; Jiménez-Banzo, A.; Sánchez-García, D.; Batllori, X.; Nonell, S. Singlet oxygen photosensitisation by the fluorescent probe singlet oxygen sensor green®. Chem. Commun. 2009, 2920-2922.
[33]
Xue, X. D.; Zhao, Y. Y.; Dai, L. R.; Zhang, X.; Hao, X. H.; Zhang, C. Q.; Huo, S. D.; Liu, J.; Liu, C.; Kumar, A. et al. Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission. Adv. Mater. 2014, 26, 712-717.
[34]
Yu, Y.; Feng, C.; Hong, Y. N.; Liu, J. Z.; Chen, S. J.; Ng, K. M.; Luo, K. Q.; Tang, B. Z. Cytophilic fluorescent bioprobes for long-term cell tracking. Adv. Mater. 2011, 23, 3298-3302.
[35]
Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg. Chem. 2012, 51, 6443-6445.
[36]
Liu, J.; Huang, Y. R.; Kumar, A.; Tan, A.; Jin, S. B.; Mozhi, A.; Liang, X. J. Ph-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014, 32, 693-710.
[37]
Tan, S. J.; Jana, N. R.; Gao, S. J.; Patra, P. K.; Ying, J. Y. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem. Mater. 2010, 22, 2239-2247.
[38]
Naim, B.; Zbaida, D.; Dagan, S.; Kapon, R.; Reich, Z. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J. 2009, 28, 2697-2705.
[39]
Zhou, Y.; Sun, H. J.; Wang, F. M.; Ren, J. S.; Qu, X. G. How functional groups influence the ros generation and cytotoxicity of graphene quantum dots. Chem. Commun. 2017, 53, 10588-10591.
Nano Research
Pages 503-510
Cite this article:
Yuan Y, Bo R, Jing D, et al. Excipient-free porphyrin/SN-38 based nanotheranostics for drug delivery and cell imaging. Nano Research, 2020, 13(2): 503-510. https://doi.org/10.1007/s12274-020-2641-z
Topics:

724

Views

13

Crossref

N/A

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 21 October 2019
Revised: 05 January 2020
Accepted: 05 January 2020
Published: 16 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return