AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes

David Sichen Wu1Guangmin Zhou1Eryang Mao2Yongming Sun2( )Bofei Liu1Li Wang3Jiangyan Wang1Feifei Shi1Yi Cui1,4( )
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
Show Author Information

Graphical Abstract

Abstract

Lithium-ion batteries are approaching their theoretical limit and can no longer keep up with the increasing demands of human society. Lithium-sulfur batteries, with a high theoretical specific energy, are promising candidates for next generation energy storage. However, the use of Li metal in Li-S batteries compromises both safety and performance, enabling dendrite formation and causing fast capacity degradation. Previous studies have probed alternative battery systems to replace the metallic Li in Li-S system, such as a Si/Li2S couple, with limited success in performance. Recently, there is a focus on red P as a favorable anode material to host Li. Here, we establish a novel battery scheme by utilizing a P/C nanocomposite anode and pairing it with a Li2S coated carbon nanofiber cathode. We find that red P anode can be compatible in ether-based electrolyte systems and can be successfully coupled to a Li2S cathode. Our proof of concept full-cell displays remarkable specific capacity, rate and cycling performances. We expect our work will provide a useful alternative system and valuable insight in the quest for next generation energy storage devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2645_MOESM1_ESM.pdf (2 MB)

References

[1]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[2]
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
[3]
Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.
[4]
Nazar, L. F.; Cuisinier, M.; Pang, Q. Lithium-sulfur batteries. MRS Bulletin 2014, 39, 436-442.
[5]
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.
[6]
Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821-9826.
[7]
Wu, D. S.; Shi, F. F.; Zhou, G. M.; Zu, C. X.; Liu, C.; Liu, K.; Liu, Y. Y.; Wang, J. Y.; Peng, Y. C.; Cui, Y. Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Mater. 2018, 13, 241-246.
[8]
Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl Acad Sci USA 2017, 114, 840-845.
[9]
Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.
[10]
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.
[11]
Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.
[12]
Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027-4054.
[13]
Wang, H. S.; Lin, D. C.; Xie, J.; Liu, Y. Y.; Chen, H.; Li, Y. B.; Xu, J. W.; Zhou, G. M.; Zhang, Z. W.; Pei, A. et al. An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 2019, 9, 1802720.
[14]
Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y. H.; Selman, J. R. Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution: The role of SEI dynamics. J. Electrochem. Soc. 2007, 154, A943-A948.
[15]
Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010, 10, 1486-1491.
[16]
Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta 2015, 163, 71-76.
[17]
Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta 2004, 50, 247-254.
[18]
Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G.; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 2018, 11, 2733-2745.
[19]
Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455-462.
[20]
Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100-104.
[21]
Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.
[22]
Li, J. Y.; Wang, L.; Ren, Y. M.; Zhang, Y.; Wang, Y. F.; Hu, A. G.; He, X. M. Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics 2016, 22, 167-172.
[23]
Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499-506.
[24]
Qin, X. Y.; Yan, B. Y.; Yu, J.; Jin, J.; Tao, Y.; Mu, C.; Wang, S. C.; Xue, H. G.; Pang, H. Phosphorus-based materials for high-performance rechargeable batteries. Inorg. Chem. Front. 2017, 4, 1424-1444.
[25]
Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 2019, 3, 1080-1093.
[26]
Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. 2012, 124, 9168-9171.
[27]
Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 2016, 6, 1501355.
[28]
Zhou, G. M.; Sun, J.; Jin, Y.; Chen, W.; Zu, C. X.; Zhang, R. F.; Qiu, Y. C.; Zhao, J.; Zhuo, D.; Liu, Y. Y. et al. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Mater. 2017, 29, 1603366.
Nano Research
Pages 1383-1388
Cite this article:
Sichen Wu D, Zhou G, Mao E, et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research, 2020, 13(5): 1383-1388. https://doi.org/10.1007/s12274-020-2645-8
Topics:

816

Views

17

Crossref

N/A

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 28 October 2019
Revised: 23 December 2019
Accepted: 07 January 2020
Published: 02 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return