AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/ photothermal therapy

Li Zhang1,§Zhe Yang1,§Jinghua Ren4Li Ba4Wenshan He2( )Chun-Yuen Wong1,3( )
Department of Chemistry, City University of Hong Kong, Hong Kong, China
Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

§ Li Zhang and Zhe Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much interest in recent years, but non-specific distribution of photosensitizers and intrinsic tumor hypoxic microenvironment have continued to limit its therapeutic efficiency. We herein report a nano-theranostic system, denoted as Ce6-CuS/MSN@PDA@MnO2-FA NPs, which combines PDT, PTT, magnetic resonance (MR) imaging with hypoxia-relieving and tumor-targeting functionalities. Central to this design is the use of mussel-inspired polydopamine (PDA) coating to encapsulate the chlorin e6 (Ce6) and copper sulfide nanoparticles (CuS NPs) loaded mesoporous silica nanoparticle (MSN) core. The PDA coating not only acts as pH sensitive gatekeeper to prevent the premature release of Ce6 under non-acidic tumor microenvironment (TME), but also facilitates post-functionalization so that hypoxia-relieving MnO2 nano-sheets and tumor-targeting ligand folic acid-PEG-thiol (FA-PEG-SH) can be decorated on the outer part of the drug system. In vitro and in vivo measurements clearly demonstrated that all these functionalities worked synergistically as expected. The system, having a low dark cytotoxicity, can be effectively internalized by 4T1 cells and decrease the cell viability to 2% upon 660 nm/808 nm laser irradiation. Tumors in 4T1 tumor-bearing mice can almost be completely destroyed in 2 weeks via combined PDT/PTT. Together with the TME-sensitive MR imaging performance demonstrated, Ce6-CuS/MSN@PDA@MnO2-FA NPs represent a multifunctional prototype which holds great potential to be developed into clinical theranostics.

Electronic Supplementary Material

Download File(s)
12274_2020_2646_MOESM1_ESM.pdf (3 MB)

References

[1]
Yang, T.; Tang, Y. A.; Liu, L.; Lv, X. Y.; Wang, Q. L.; Ke, H. T.; Deng, Y. B.; Yang, H.; Yang, X. L.; Liu, G. et al. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 2017, 11, 1848-1857.
[2]
Deng, Y. Y.; Jia, F.; Chen, S. Y.; Shen, Z. D.; Jin, Q.; Fu, G. S.; Ji, J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018, 187, 55-65.
[3]
Wang, B.; Lin, W. M.; Mao, Z. W.; Gao, C. Y. Near-infrared light triggered photothermal therapy and enhanced photodynamic therapy with a tumor-targeting hydrogen peroxide shuttle. J. Mater. Chem. B 2018, 6, 3145-3155.
[4]
Yang, Y.; Zhu, W. J.; Feng, L. Z.; Chao, Y.; Yi, X.; Dong, Z. L.; Yang, K.; Tan, W. H.; Liu, Z.; Chen, M. W. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 2018, 18, 6867-6875.
[5]
Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z. P.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915-2923.
[6]
Zhang, D.; Wu, M.; Zeng, Y. Y.; Wu, L. J.; Wang, Q. T.; Han, X.; Liu, X. L.; Liu, J. F. Chlorin e6 conjugated poly (dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl. Mater. Interfaces 2015, 7, 8176-8187.
[7]
Zhu, H. J.; Li, J. C.; Qi, X. Y.; Chen, P.; Pu, K. Y. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018, 18, 586-594.
[8]
Ren, H.; Liu, J. Q.; Su, F. H.; Ge, S. Z.; Yuan, A. H.; Dai, W. M.; Wu, J. H.; Hu, Y. Q. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2017, 9, 3463-3473.
[9]
Liu, J. T.; Du, P.; Mao, H.; Zhang, L.; Ju, H. X.; Lei, J. P. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 2018, 172, 83-91.
[10]
Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.
[11]
Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145-6153.
[12]
Li, R. Q.; Zhang, C.; Xie, B. R.; Yu, W. Y.; Qiu, W. X.; Cheng, H.; Zhang, X. Z. A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 2019, 194, 84-93.
[13]
Wang, H. R.; Chao, Y.; Liu, J. J.; Zhu, W. W.; Wang, G. L.; Xu, L. G.; Liu, Z. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials 2018, 181, 310-317.
[14]
Kim, J.; Cho, H. R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S. H.; Hyeon, T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 2017, 139, 10992-10995.
[15]
Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, T. Q.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Li, C. Y. et al. One-dimensional Fe2P acts as a fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem., Int. Ed .2019, 58, 2407-2412.
[16]
Yang, Z. L.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y. L.; Tian, Y.; Tang, Y. X.; Wang, S. J.; Liu, Y.; Ni, Q. Q. et al. Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. 2018, 5, 1700847.
[17]
Wei, J. P.; Li, J. C.; Sun, D.; Li, Q.; Ma, J. Y.; Chen, X. L.; Zhu, X.; Zheng, N. F. A novel theranostic nanoplatform based on Pd@Pt-PEG- Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 2018, 28, 1706310.
[18]
Xu, J. T.; Han, W.; Yang, P. P.; Jia, T.; Dong, S. M.; Bi, H. T.; Gulzar, A.; Yang, D.; Gai, S. L.; He, F. et al. Tumor microenvironment- responsive mesoporous MnO2-coated upconversion nanoplatform for self-enhanced tumor theranostics. Adv. Funct. Mater. 2018, 28, 1803804.
[19]
Zhang, W. T.; Li, S. H.; Liu, X. N.; Yang, C. Y.; Hu, N.; Dou, L. N.; Zhao, B. X.; Zhang, Q. Y.; Suo, Y. R.; Wang, J. L. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo- photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018, 28, 1706375.
[20]
Gao, S.; Wang, G. H.; Qin, Z. N.; Wang, X. Y.; Zhao, G. Q.; Ma, Q. J.; Zhu, L. Oxygen-generating hybrid nanoparticles to enhance fluorescent/ photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 2017, 112, 324-335.
[21]
Lin, T. S; Zhao, X. Z.; Zhao, S.; Yu, H.; Cao, W. M.; Chen, W.; Wei, H.; Guo, H. Q. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 2018, 8, 990-1004.
[22]
Fan, H. H; Yan, G. B.; Zhao, Z. L.; Hu, X. X.; Zhang, W. H.; Liu, H.; Fu, X. Y.; Fu, T.; Zhang, X. B.; Tan, W. H. A smart photosensitizer- manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew. Chem., Int. Ed .2016, 55, 5477-5482.
[23]
Liu, B.; Li, C. X.; Chen, G. Y.; Liu, B.; Deng, X. R.; Wei, Y.; Xia, J.; Xing, B. G.; Ma, P. A.; Lin, J. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv. Sci. 2017, 4, 1600540.
[24]
Li, P. S.; Liu, L.; Lu, Q. L.; Yang, S.; Yang, L. F.; Cheng, Y.; Wang, Y. D.; Wang, S. Y.; Song, Y. L.; Tan, F. P. et al. Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 5771-5781.
[25]
Yang, C. Y.; Yu, H. H.; Gao, Y.; Guo, W.; Li, Z. Z.; Chen, Y. D.; Pan, Q. M.; Ren, M. X.; Han, X. J.; Guo, C. S. Surface-engineered vanadium nitride nanosheets for an imaging-guided photothermal/ photodynamic platform of cancer treatment. Nanoscale 2019, 11, 1968-1977.
[26]
You, Q.; Sun, Q.; Wang, J. P.; Tan, X. X.; Pang, X. J.; Liu, L.; Yu, M.; Tan, F. P.; Li, N. A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2. Nanoscale 2017, 9, 3784-3796.
[27]
Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. B. Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 2018, 30, 1704367.
[28]
Chang, D. F.; Gao, Y. F.; Wang, L. J.; Liu, G.; Chen, Y. H.; Wang, T.; Tao, W.; Mei, L.; Huang, L. Q.; Zeng, X. W. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J. Colloid Interface Sci. 2016, 463, 279-287.
[29]
Li, Y. Z.; Zhao, R.; Chao, S.; Sun, B. L.; Wang, C.; Li, X. Polydopamine coating assisted synthesis of MnO2 loaded inorganic/ organic composite electrospun fiber adsorbent for efficient removal of Pb2+ from water. Chem. Eng. J. 2018, 344, 277-289.
[30]
Cheng, W.; Nie, J. P.; Xu, L.; Liang, C. Y.; Peng, Y. M.; Liu, G.; Wang, T.; Mei, L.; Huang, L. Q.; Zeng, X. W. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 18462-18473.
[31]
Xiao, D.; Jia, H. Z.; Zhang, J.; Liu, C. W.; Zhuo, R. X.; Zhang, X. Z. A dual-responsive mesoporous silica nanoparticle for tumor- triggered targeting drug delivery. Small 2014, 10, 591-598.
[32]
Zhang, L.; Yang, Z.; Zhu, W.; Ye, Z. L.; Yu, Y. M.; Xu, Z. S.; Ren, J. H.; Li, P. H. Dual-stimuli-responsive, polymer-microsphere-encapsulated CuS nanoparticles for magnetic resonance imaging guided synergistic chemo-photothermal therapy. ACS Biomater. Sci. Eng. 2017, 3, 1690-1701.
[33]
Liu, X. M.; Yang, T. S.; Han, Y. F.; Zou, L.; Yang, H. R.; Jiang, J. Y.; Liu, S. J.; Zhao, Q.; Huang, W. In situ growth of CuS/SiO2-based multifunctional nanotherapeutic agents for combined photodynamic/ photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 31008-31018.
[34]
Zhang, W. H.; Shi, J. L.; Chen, H. R.; Hua, Z. L.; Yan, D. S. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica. Chem. Mater. 2001, 13, 648-654.
[35]
Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.
[36]
Zhu, W.; Zhang, L.; Yang, Z.; Liu, P.; Wang, J.; Cao, J. G.; Shen, A. G.; Xu, Z. S.; Wang, J. An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy. Chem. Eng. J. 2019, 358, 969-979.
[37]
He, Z. M.; Xiao, Y.; Zhang, J. R.; Zhang, P. H.; Zhu, J. J. In situ formation of large pore silica-MnO2 nanocomposites with H+/H2O2 sensitivity for O2-elevated photodynamic therapy and potential MR imaging. Chem. Commun. 2018, 54, 2962-2965.
[38]
Liu, R. Q.; Liang, S.; Jiang, C.; Zhang, L.; Yuan, T. M.; Li, P. H.; Xu, Z. S.; Xu, H. B.; Chu, P. K. Smart polymeric particle encapsulated gadolinium oxide and europium: Theranostic probes for magnetic resonance/ optical imaging and antitumor drug delivery. J. Mater. Chem. B 2016, 4, 1100-1107.
Nano Research
Pages 1389-1398
Cite this article:
Zhang L, Yang Z, Ren J, et al. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/ photothermal therapy. Nano Research, 2020, 13(5): 1389-1398. https://doi.org/10.1007/s12274-020-2646-7
Topics:

776

Views

43

Crossref

N/A

Web of Science

40

Scopus

2

CSCD

Altmetrics

Received: 31 October 2019
Revised: 31 December 2019
Accepted: 07 January 2020
Published: 23 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return