AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution

Minglei Yan1Kun Mao1Peixin Cui2Chi Chen3Jie Zhao1Xizhang Wang1Lijun Yang1Hui Yang3Qiang Wu1( )Zheng Hu1( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Show Author Information

Graphical Abstract

Abstract

As a choke point in water electrolysis, the oxygen evolution reaction (OER) suffers from the severe electrode polarization and large overpotential. Herein, the porous hierarchical hetero-(Ni3-xFex)FeN/Ni catalysts are in situ constructed for the efficient electrocatalytic OER. X-ray absorption fine structure characterizations reveal the strong Ni-Fe bimetallic interaction in (Ni3-xFex)FeN/Ni. Theoretical study indicates the heterojunction and bimetallic interaction decrease the free-energy change for the rate-limiting step of the OER and the overpotential thereof. In addition, the high conductivity and porous hierarchical morphology favor the electron transfer, electrolyte access and O2 release. Consequently, the optimized catalyst achieves a low overpotential of 223 mV at 10 mA·cm-2, a small Tafel slope of 68 mV·dec-1, and a high stability. The excellent performance of the optimized catalyst is also demonstrated by the overall water electrolysis with a low working voltage and high Faradaic efficiency. Moreover, the correlation between the structure and performance is well established by the experimental characterizations and theoretical calculations, which confirms the origin of the OER activity from the surface metal oxyhydroxide in situ generated upon applying the current. This study suggests a promising approach to the advanced OER electrocatalysts for practical applications by constructing the porous hierarchical metal-compound/metal heterojunctions.

Electronic Supplementary Material

Download File(s)
12274_2020_2649_MOESM3_ESM.pdf (4.5 MB)

References

[1]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[2]
Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069-8097.
[3]
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[4]
Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 2013, 5, 403-409.
[5]
Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973-12000.
[6]
Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951-957.
[7]
Zhu, X.; Jin, T.; Tian, C. C.; Lu, C. B.; Liu, X. M.; Zeng, M.; Zhuang, X. D.; Yang, S. Z.; He, L.; Liu, H. L. et al. In situ coupling strategy for the preparation of FeCo alloys and CO4N hybrid for highly efficient oxygen evolution. Adv. Mater. 2017, 29, 1704091.
[8]
Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.
[9]
Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236-2241.
[10]
Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.
[11]
Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface s residues. Adv. Mater. 2018, 30, 1800757.
[12]
Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.
[13]
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[14]
Huang, J. Z.; Han, J. C.; Wang, R.; Zhang, Y. Y.; Wang, X. J.; Zhang, X. H.; Zhang, Z. H.; Zhang, Y. M.; Song, B.; Jin, S. Improving electrocatalysts for oxygen evolution using NixFe3-xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett. 2018, 3, 1698-1707.
[15]
Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.
[16]
Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.
[17]
Zhang, B.; Xiao, C. H.; Xie, S. M.; Liang, J.; Chen, X.; Tang, Y. H. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934-6941.
[18]
Wang, Y. Y.; Xie, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. Nanoparticle-stacked porous nickel-iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 18652-18657.
[19]
Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes. Nano Energy 2017, 40, 382-389.
[20]
Lai, H. W.; Wu, Q.; Zhao, J.; Shang, L. M.; Li, H.; Che, R. C.; Lyu, Z. Y.; Xiong, J. F.; Yang, L. J.; Wang, X. X. et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 2016, 9, 2053-2060.
[21]
Xiong, J. F.; Shen, H.; Mao, J. X.; Qin, X. T.; Xiao, P.; Wang, X. Z.; Wu, Q.; Hu, Z. Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst. J. Mater. Chem. 2012, 22, 11927-11932.
[22]
Wu, Q.; Xiong, J. F.; Hu, Z.; Wang, X. Z. Nickel-based composite nanomaterial and preparation method thereof as well as porous nickel nanomaterial and preparation method and application thereof. China Patent CN201110232023.1, November 6, 2013.
[23]
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.
[24]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[25]
Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125.
[26]
Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252-1265.
[27]
Chen, Q.; Wang, R.; Yu, M. H.; Zeng, Y. X.; Lu, F. Q.; Kuang, X. J.; Lu, X. H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 2017, 247, 666-673.
[28]
Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119-4125.
[29]
Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
[30]
Liang, K.; Guo, L. M.; Marcus, K.; Zhang, S. F.; Yang, Z. Z.; Perea, D. E.; Zhou, L.; Du, Y. G.; Yang, Y. Overall water splitting with room-temperature synthesized NiFe oxyfluoride nanoporous films. ACS Catal. 2017, 7, 8406-8412.
[31]
Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551.
[32]
Das, D.; Nanda, K. K. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy 2016, 30, 303-311.
[33]
Miao, R.; He, J. K.; Sahoo, S.; Luo, Z.; Zhong, W.; Chen, S. Y.; Guild, C.; Jafari, T.; Dutta, B.; Cetegen, S. A. et al. Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal. 2017, 7, 819-832.
[34]
Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.
[35]
Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
[36]
Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.
[37]
Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478-483.
[38]
Yan, F.; Wang, Y.; Li, K. Y.; Zhu, C. L.; Gao, P.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities. Chem.— Eur. J. 2017, 23, 10187-10194.
[39]
Zhao, S. L.; Li, M.; Han, M.; Xu, D. D.; Yang, J.; Lin, Y.; Shi, N. E.; Lu, Y. N.; Yang, R.; Liu, B. T. et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2018, 28, 1706018.
[40]
Tao, L. M.; Li, M.; Wu, S. H.; Wang, Q. L.; Xiao, X.; Li, Q. W.; Wang, M. K.; Fu, Y. Q.; Shen, Y. Sea coral-like NiCo2O4@(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catal. Sci. Technol. 2018, 8, 4151-4158.
[41]
Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T. Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl. Catal. B: Environ. 2019, 241, 521-527.
[42]
Yan, R. Y.; Josef, E.; Huang, H. J.; Leus, K.; Niederberger, M.; Hofmann, J. P.; Walczak, R.; Antonietti, M.; Oschatz, M. Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv. Funct. Mater. 2019, 29, 1902858.
[43]
Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335-4342.
[44]
Guo, H. P.; Ruan, B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018, 8, 9686-9696.
Nano Research
Pages 328-334
Cite this article:
Yan M, Mao K, Cui P, et al. In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Research, 2020, 13(2): 328-334. https://doi.org/10.1007/s12274-020-2649-4
Topics:

779

Views

58

Crossref

N/A

Web of Science

57

Scopus

10

CSCD

Altmetrics

Received: 05 November 2019
Revised: 30 December 2019
Accepted: 08 January 2020
Published: 27 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return