AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy

Zhijiao Wu1,§Kai Guo1,4,§Shuang Cao1( )Wenqing Yao3( )Lingyu Piao1,2( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Zhijiao Wu and Kai Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The TiO2-H2O2 system possesses excellent oxidation activity even under dark conditions. However, the mechanism of this process is unclear and inconsistent. In this work, the binary component system containing TiO2 nanoparticles (NPs) with single electron-trapped oxygen vacancy (SETOV, VO·) and H2O2 exhibit excellent oxidative performance for tetracycline, RhB, and MO even without light irradiation. We systematically investigated the mechanism for the high activity of the TiO2-H2O2 under dark condition. Reactive oxygen species (ROS) induced from H2O2 play a significant role in improving the catalytic degradation activities. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results firstly confirm that H2O2 is primarily activated by SETOVs derived from the TiO2 NPs through direct contribution of electrons, producing both ·O2-/·OOH and ·OH, which are responsible for the excellent reactivity of TiO2-H2O2 system. This work not only provides a new perspective on the role of SETOVs playing in the H2O2 activation process, but also expands the application of TiO2 in environmental conservation.

References

[1]
O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
[2]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[3]
Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.
[4]
Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.
[5]
Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092-2101.
[6]
Wang, M.; Zhen, W. L.; Tian, B.; Ma, J. T.; Lu, G. X. The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst. Appl. Catal. B: Environ. 2018, 236, 240-252.
[7]
Li, X.; Shi, J. L.; Hao, H. M.; Lang, X. J. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B: Environ. 2018, 232, 260-267.
[8]
Wu, Z. J.; Cao, S.; Zhang, C.; Piao, L. Y. Effects of bulk and surface defects on the photocatalytic performance of size-controlled TiO2 nanoparticles. Nanotechnology 2017, 28, 275706.
[9]
Zhang, Y.; Cui, W. Q.; An, W. J.; Liu, L.; Liang, Y. H.; Zhu, Y. F. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure. Appl. Catal. B: Environ. 2018, 221, 36-46.
[10]
Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y. Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation. Acta Phys.-Chim. Sin. 2017, 33, 1492-1498.
[11]
Wang, Y. Y.; Yang, W. J.; Chen, X. J.; Wang, J.; Zhu, Y. F. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B: Environ. 2018, 220, 337-347.
[12]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[13]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
[14]
Wei, Z.; Liu, D.; Wei, W. Q.; Chen, X. J.; Han, Q.; Yao, W. Q.; Ma, X. G.; Zhu, Y. F. Ultrathin TiO2(B) nanosheets as the inductive agent for transfrering H2O2 into superoxide radicals. ACS Appl. Mater. Interfaces 2017, 9, 15533-15540.
[15]
Sánchez, L. D.; Taxt-Lamolle, S. F. M.; Hole, E. O.; Krivokapić, A.; Sagstuen, E.; Haugen, H. J. TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Appl. Catal. B: Environ. 2013, 142-143, 662-667.
[16]
Randorn, C.; Wongnawa, S.; Boonsin, P. Bleaching of methylene blueS by hydrated titanium dioxide. ScienceAsia 2004, 30, 149-156.
[17]
Zhang, A. Y.; Lin, T.; He, Y. Y.; Mou, Y. X. Heterogeneous activation of H2O2 by defect-engineered TiO2-x single crystals for refractory pollutants degradation: A Fenton-like mechanism. J. Hazard. Mater. 2016, 311, 81-90.
[18]
Wiedmer, D.; Sagstuen, E.; Welch, K.; Haugen, H. J.; Tiainen, H. Oxidative power of aqueous non-irradiated TiO2 -H2O2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Appl. Catal. B: Environ. 2016, 198, 9-15.
[19]
Zhou, C. J.; Luo, J. J.; Chen, Q. Q.; Jiang, Y. Z.; Dong, X. P.; Cui, F. M. Titanate nanosheets as highly efficient non-light-driven catalysts for degradation of organic dyes. Chem. Commun. 2015, 51, 10847-10849.
[20]
Li, J. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; He, C. Q.; Yang, J. J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300-307.
[21]
Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.
[22]
Yan, J. H.; Liu, P.; Ma, C. R.; Lin, Z. Y.; Yang, G. W. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826-8838.
[23]
Guan, L.; Chen, X. B. Photoexcited charge transport and accumulation in anatase TiO2. ACS Appl. Energy Mater. 2018, 1, 4313-4320.
[24]
Cheng, X. L.; Hu, M.; Huang, R.; Jiang, J. S. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 19176-19183.
[25]
Wu, Q.; Liu, M.; Wu, Z. J.; Li, Y. L.; Piao, L. Y. Is photooxidation activity of {001} facets truly lower than that of {101} facets for anatase TiO2 crystals? J. Phys. Chem. C 2012, 116, 26800-26804.
[26]
Liu, S. W.; Yu, J. G.; Wang, W. G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 2010, 12, 12308-12315.
[27]
Liao, J. H.; Shi, L. Y.; Yuan, S.; Zhao, Y.; Fang, J. H. Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities. J. Phys. Chem. C 2009, 113, 18778-18783.
[28]
Han, E.; Vijayarangamuthu, K.; Youn, J. S.; Park, Y. K.; Jung, S. C.; Jeon, K. J. Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catal. Today 2018, 303, 305-312.
[29]
Singh, G. P.; Shrestha, K. M.; Nepal, A.; Klabunde, K. J.; Sorensen, C. M. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 2014, 25, 265701.
[30]
Tian, F.; Zhang, Y. P.; Zhang, J.; Pan, C. X. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 2012, 116, 7515-7519.
[31]
Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905-6910.
[32]
Zou, J.; Gao, J. C.; Xie, F. Y. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Compd. 2010, 497, 420-427.
[33]
Fu, D.; Huang, Y. J.; Zhang, X. T.; Kurniawan, T. A.; Ouyang, T. Uncovering potentials of integrated TiO2(B) nanosheets and H2O2 for removal of tetracycline from aqueous solution. J. Mol. Liq. 2017, 248, 112-120.
[34]
Chen, J.; Ding, Z. Y.; Wang, C.; Hou, H. S.; Zhang, Y.; Wang, C. W.; Zou, G. Q.; Ji, X. B. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 2016, 8, 9142-9151.
[35]
Liu, W.; Liu, H. C.; Ai, Z. H. In-situ generated H2O2 induced efficient visible light photo-electrochemical catalytic oxidation of PCP-Na with TiO2. J. Hazard. Mater. 2015, 288, 97-103.
[36]
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 318, 746-750.
[37]
Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614.
[38]
Dong, G. Y.; Wang, X.; Chen, Z. W.; Lu, Z. Y. Enhanced photocatalytic activity of vacuum-activated TiO2 induced by oxygen vacancies. Photochem. Photobiol., 2018, 94, 472-483.
[39]
Zeng, L.; Song, W. L.; Li, M. H.; Zeng, D. W.; Xie, C. S. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Appl. Catal. B: Environ. 2014, 147, 490-498.
[40]
Hou, L. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; Yang, J. J. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 428, 640-647.
[41]
Occhiuzzi, M.; Cordischi, D.; De Rossi, S.; Ferraris, G.; Gazzoli, D.; Valigi, M. Pd-promoted WOx/ZrO2 catalysts: Characterization and catalytic activity for n-butane isomerization. Appl. Catal. A: General 2008, 351, 29-35.
[42]
Bedilo, A. F.; Plotnikov, M. A.; Mezentseva, N. V.; Volodin, A. M.; Zhidomirov, G. M.; Rybkin, I. M.; Klabunde, K. J. Superoxide radical anions on the surface of zirconia and sulfated zirconia: Formation mechanisms, properties and structure. Phys. Chem. Chem. Phys. 2005, 7, 3059-3069.
[43]
Wang, J. J.; Li, Z. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Yu, S.; Li, C. B.; Li, J. X.; Tung, C. H.; Wu, L. Z. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. ChemSusChem 2014, 7, 1468-1475.
[44]
Green, M. A.; Xu, J. L.; Liu, H. L.; Zhao, J. Y.; Li, K. X.; Liu, L.; Qin, H.; Zhu, Y. M.; Shen D. Z.; Chen, X. B. Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 2018, 4, 64-69.
[45]
Green, M.; Liu, Z. Q.; Xiang, P.; Liu, Y.; Zhou, M. J.; Tan, X. Y.; Huang, F. Q.; Liu, L.; Chen, X. B. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light: Sci. Appl. 2018, 7, 87.
[46]
Wang, Y.; Meng, X. J.; Yu, X. L.; Zhang, M.; Yang, J. J. Recoverable visible light photocatalytic activity of wide band gap nanotubular titanic acid induced by H2O2-pretreatment. Appl. Catal. B: Environ. 2013, 138-139, 326-332.
[47]
Pi, L.; Yang, N.; Han, W.; Xiao, W.; Wang, D. H.; Xiong, Y.; Zhou, M.; Hou, H. B.; Mao, X. H. Heterogeneous activation of peroxymonocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate. Chem. Eng. J. 2018, 334, 1297-1308.
Nano Research
Pages 551-556
Cite this article:
Wu Z, Guo K, Cao S, et al. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Research, 2020, 13(2): 551-556. https://doi.org/10.1007/s12274-020-2650-y
Topics:

849

Views

25

Crossref

N/A

Web of Science

24

Scopus

5

CSCD

Altmetrics

Received: 04 November 2019
Revised: 27 December 2019
Accepted: 08 January 2020
Published: 23 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return