AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamics of exciton energy renormalization in monolayer transition metal disulfides

Jiaxin Zhao1,§Weijie Zhao1,§Wei Du1Rui Su1Qihua Xiong1,2( )
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China

§Jiaxin Zhao and Weijie Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Fundamental understandings on the dynamics of charge carriers and excitonic quasiparticles in semiconductors are of central importance for both many-body physics and promising optoelectronic and photonic applications. Here, we investigated the carrier dynamics and many-body interactions in two-dimensional (2D) transition metal dichalcogenides (TMDs), using monolayer WS2 as an example, by employing femtosecond broadband pump-probe spectroscopy. Three time regimes for the exciton energy renormalization are unambiguously revealed with a distinct red-blue-red shift upon above-bandgap optical excitations. We attribute the dominant physical process in the three typical regimes to free carrier screening effect, Coulombic exciton-exciton interactions and Auger photocarrier generation, respectively, which show distinct dependence on the optical excitation wavelength, pump fluences and/or lattice temperature. An intrinsic exciton radiative lifetime of about 1.2 picoseconds (ps) in monolayer WS2 is unraveled at low temperature, and surprisingly the efficient Auger nonradiative decay of both bright and dark excitons puts the system in a nonequilibrium state at the nanosecond timescale. In addition, the dynamics of trions at low temperature is observed to be significantly different from that of excitons, e.g., a long radiative lifetime of ~ 108.7 ps at low excitation densities and the evolution of trion energy as a function of delay times. Our findings elucidate the dynamics of excitonic quasiparticles and the intricate many-body physics in 2D semiconductors, underpinning the future development of photonics, valleytronics and optoelectronics based on 2D semiconductors.

Electronic Supplementary Material

Download File(s)
12274_2020_2652_MOESM1_ESM.pdf (2 MB)

References

[1]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[2]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[3]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[4]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[5]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[6]
Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451-460.
[7]
Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.
[8]
Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.
[9]
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[10]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[11]
Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.
[12]
Wang, S. F.; Wang, J. Y.; Zhao, W. J.; Giustiniano, F.; Chu, L. Q.; Verzhbitskiy, I.; Zhou Yong, J.; Eda, G. Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett. 2017, 17, 5156-5162.
[13]
Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421-425.
[14]
Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[15]
Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004-1015.
[16]
Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340-344.
[17]
Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vuckovic, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69-72.
[18]
Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733-737.
[19]
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[20]
Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466-470.
[21]
Liu, B.; Zhao, W. J.; Ding, Z. J.; Verzhbitskiy, I.; Li, L. J.; Lu, J. P.; Chen, J. Y.; Eda, G.; Loh, K. P. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects. Adv. Mater. 2016, 28, 6457-6464.
[22]
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[23]
Barbone, M.; Montblanch, A. R. P.; Kara, D. M.; Palacios-Berraquero, C.; Cadore, A. R.; De Fazio, D.; Pingault, B.; Mostaani, E.; Li, H.; Chen, B. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 2018, 9, 3721.
[24]
You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477-481.
[25]
Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.
[26]
Steinhoff, A.; Florian, M.; Singh, A.; Tran, K.; Kolarczik, M.; Helmrich, S.; Achtstein, A. W.; Woggon, U.; Owschimikow, N.; Jahnke, F. et al. Biexciton fine structure in monolayer transition metal dichalcogenides. Nat. Phys. 2018, 14, 1199-1204.
[27]
Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 2015, 14, 889-893.
[28]
Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080.
[29]
Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681-11688.
[30]
Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455-1460.
[31]
Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339-345.
[32]
Hao, K.; Specht, J. F.; Nagler, P.; Xu, L. X.; Tran, K.; Singh, A.; Dass, C. K.; Schüller, C.; Korn, T.; Richter, M. et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 2017, 8, 15552.
[33]
Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; del Águila, A. G.; Christianen, P. C. M.; Bratschitsch, R.; Schuller, C.; Korn, T. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun. 2016, 7, 12715.
[34]
Guo, L.; Wu, M.; Cao, T.; Monahan, D. M.; Lee, Y. H.; Louie, S. G.; Fleming, G. R. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys. 2019, 15, 228-232.
[35]
Schmidt, R.; Berghäuser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malić, E.; Knorr, A.; Michaelis de Vasconcellos, S.; Bratschitsch, R. Ultrafast Coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016, 16, 2945-2950.
[36]
Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677-682.
[37]
Bertoni, R.; Nicholson, C. W.; Waldecker, L.; Hübener, H.; Monney, C.; De Giovannini, U.; Puppin, M.; Hoesch, M.; Springate, E.; Chapman, R. T. et al. Generation and evolution of spin-, valley-, and layer-polarized excited carriers in inversion-symmetric WSe2. Phys. Rev. Lett. 2016, 117, 277201.
[38]
Yan, T. F.; Yang, S. Y.; Li, D.; Cui, X. D. Long valley relaxation time of free carriers in monolayer WSe2. Phys. Rev. B 2017, 95, 241406.
[39]
Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202-206.
[40]
Cunningham, P. D.; Hanbicki, A. T.; McCreary, K. M.; Jonker, B. T. Photoinduced bandgap renormalization and exciton binding energy reduction in WS2. ACS Nano 2017, 11, 12601-12608.
[41]
Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
[42]
Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 2017, 17, 644-651.
[43]
Sie, E. J.; Steinhoff, A.; Gies, C.; Luo, C. H.; Ma, Q.; Rosner, M.; Schönhoff, G.; Jahnke, F.; Wehling, T. O.; Lee, Y. H. et al. Observation of exciton redshift-blueshift crossover in monolayer WS2. Nano Lett. 2017, 17, 4210-4216.
[44]
Yuan, L.; Chung, T. F.; Kuc, A.; Wan, Y.; Xu, Y.; Chen, Y. P.; Heine, T.; Huang, L. B. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 2018, 4, e1700324.
[45]
Wake, D. R.; Yoon, H. W.; Wolfe, J. P.; Morkoç, H. Response of excitonic absorption spectra to photoexcited carriers in GaAs quantum wells. Phys. Rev. B 1992, 46, 13452-13460.
[46]
Manzke, G.; Henneberger, K.; May, V. Many-exciton theory for multiple quantum-well structures. Phys. Status Solidi B 1987, 139, 233-239.
[47]
Aivazian, G.; Yu, H. Y.; Wu, S. F.; Yan, J. Q.; Mandrus, D. G.; Cobden, D.; Yao, W.; Xu, X. D. Many-body effects in nonlinear optical responses of 2D layered semiconductors. 2D Mater. 2017, 4, 025024.
[48]
Cunningham, P. D.; McCreary, K. M.; Jonker, B. T. Auger recombination in chemical vapor deposition-grown monolayer WS2. J. Phys. Chem. Lett. 2016, 7, 5242-5246.
[49]
Danovich, M.; Zólyomi, V.; Fal’ko, V. I.; Aleiner, I. L. Auger recombination of dark excitons in WS2 and WSe2 monolayers. 2D Mater. 2016, 3, 035011.
[50]
Sun, D. Z.; Rao, Y.; Reider, G. A.; Chen, G. G.; You, Y. M.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 2014, 14, 5625-5629.
[51]
Mouri, S.; Miyauchi, Y.; Toh, M.; Zhao, W. J.; Eda, G.; Matsuda, K. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 2014, 90, 155449.
[52]
Steinhoff, A.; Rösner, M.; Jahnke, F.; Wehling, T. O.; Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 2014, 14, 3743-3748.
[53]
Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors. 2D Mater. 2016, 3, 031006.
[54]
Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601-6609.
[55]
Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 205423.
[56]
Steinhoff, A.; Florian, M.; Rösner, M.; Schönhoff, G.; Wehling, T. O.; Jahnke, F. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 2017, 8, 1166.
[57]
Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794-2800.
[58]
Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B 2016, 93, 045407.
[59]
Nguyen, D. T.; Voisin, C.; Roussignol, P.; Roquelet, C.; Lauret, J. S.; Cassabois, G. Elastic exciton-exciton scattering in photoexcited carbon nanotubes. Phys. Rev. Lett. 2011, 107, 127401.
[60]
Yuma, B.; Berciaud, S.; Besbas, J.; Shaver, J.; Santos, S.; Ghosh, S.; Weisman, R. B.; Cognet, L.; Gallart, M.; Ziegler, M. et al. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys. Rev. B 2013, 87, 205412.
[61]
Santos, S. M.; Yuma, B.; Berciaud, S.; Shaver, J.; Gallart, M.; Gilliot, P.; Cognet, L.; Lounis, B. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett. 2011, 107, 187401.
Nano Research
Pages 1399-1405
Cite this article:
Zhao J, Zhao W, Du W, et al. Dynamics of exciton energy renormalization in monolayer transition metal disulfides. Nano Research, 2020, 13(5): 1399-1405. https://doi.org/10.1007/s12274-020-2652-9
Topics:

903

Views

31

Crossref

N/A

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 30 September 2019
Revised: 30 December 2019
Accepted: 10 January 2020
Published: 10 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return