Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition

Lilan Tan1Qingbo Liu1Yufeng Ding1Xiaogang Lin2Wei Hu2()Meng-Qiu Cai1,3Hong Zhou1()
School of Physics and Electronics, Hunan University, Changsha 410082, China
Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The controlled synthesis of large and uniform gallium selenide (GaSe) crystals is crucial for its various applications based on the attractive properties of this emerging material. In this work, vapor phase growth of high-quality monolayer GaSe nanosheets with multiple shape and size is achieved by tuning the Ga/GaSe ratio in the precursor. A theoretical model based on density functional theory calculations and kinetic Wulff construction theory describe the observed shape evolution of the GaSe nanosheets. Results show that the Ga/Se ratio plays a critical role in the evolution of the domain shape and size. Moreover, the as-grown GaSe nanosheets show improved performance with photoresponse time less than 0.7 ms and responsibility up to 3,000 A/W. This study presents a previously unexplored strategy for the controlled growth of two-dimensional (2D) GaSe nanosheets for promising applications in next-generation optoelectronics.

Electronic Supplementary Material

Download File(s)
12274_2020_2653_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76-80.
[2]
Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[3]
Xu, J.; Chen, L.; Dai, Y. W.; Cao, Q.; Sun, Q. Q.; Ding, S. J.; Zhu, H.; Zhang, D. W. A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci. Adv. 2017, 3, e1602246.
[4]
Fang, C.; Wang, H. Z.; Shen, Z. X.; Shen, H. Z.; Wang, S.; Ma, J. Q.; Wang, J.; Luo, H. M.; Li, D. H. High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2019, 11, 8419-8427.
[5]
Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223-227.
[6]
Hopkinson, D. G.; Zólyomi, V.; Rooney, A. P.; Clark, N.; Terry, D. J.; Hamer, M.; Lewis, D. J.; Allen, C. S.; Kirkland, A. I.; Andreev, Y. et al. J. Formation and healing of defects in atomically thin GaSe and InSe. ACS Nano 2019, 13, 5112-5123.
[7]
Zhou, X.; Cheng, J. X.; Zhou, Y. B.; Cao, T.; Hong, H.; Liao, Z. M.; Wu, S. W.; Peng, H. L.; Liu, K. H.; Yu, D. P. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994-7997.
[8]
Jung, C. S.; Shojaei, F.; Park, K.; Oh, J. Y.; Im, H. S.; Jang, D. M.; Park, J.; Kang, H. S. Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 2015, 9, 9585-9593.
[9]
Li, X. F.; Lin, M. W.; Puretzky, A. A.; Idrobo, J. C.; Ma, C.; Chi, M. F.; Yoon, M.; Rouleau, C. M.; Kravchenko, I. I.; Geohegan, D. B. et al. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci. Rep. 2014, 4, 5497.
[10]
Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988-5994.
[11]
Jie, W. J.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X. D.; Hao, J. H. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew. Chem., Int. Ed. 2015, 54, 1185-1189.
[12]
Cao, T.; Li, Z. L.; Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 2015, 114, 236602.
[13]
Zhao, Q. H.; Frisenda, R.; Gant, P.; Perez de Lara, D.; Munuera, C.; Garcia-Hernandez, M.; Niu, Y.; Wang, T.; Jie, W. Q.; Castellanos-Gomez, A. Toward air stability of thin GaSe devices: Avoiding environmental and laser-induced degradation by encapsulation. Adv. Funct. Mater. 2018, 28, 1805304.
[14]
Li, X. F.; Lin, M. W.; Lin, J. H.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882.
[15]
Huang, H.; Wang, P.; Gao, Y. Q.; Wang, X. D.; Lin, T.; Wang, J. L.; Liao, L.; Sun, J. L.; Meng, X. J.; Huang, Z. M. et al. Highly sensitive phototransistor based on GaSe nanosheets. Appl. Phys. Lett. 2015, 107, 143112.
[16]
Mahjouri-Samani, M.; Gresback, R.; Tian, M. K.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365-6371.
[17]
Yuan, X.; Tang, L.; Liu, S. S.; Wang, P.; Chen, Z. G.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Zou, Y. H.; Liu, C. et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 2015, 15, 3571-3577.
[18]
Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777-2781.
[19]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[20]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[21]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[22]
Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371-6379.
[23]
Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255-262.
[24]
Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386-20391.
[25]
Dong, J. C.; Zhang, L. N.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583.
[26]
Tang, L. P.; Zhao, Z. X.; Yuan, S. P.; Yang, T. F.; Zhou, B. X.; Zhou, H. Self-catalytic VLS growth one dimensional layered GaSe nanobelts for high performance photodetectors. J. Phys. Chem. Solids 2018, 118, 186-191.
[27]
Late, D. J.; Liu, B.; Luo, J. J.; Yan, A. M.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549-3554.
[28]
Quan, L.; Song, Y. Q.; Lin, Y.; Zhang, G. H.; Dai, Y. M.; Wu, Y. K.; Jin, K.; Ding, H. Y.; Pan, N.; Luo, Y. et al. The Raman enhancement effect on a thin GaSe flake and its thickness dependence. J. Mater. Chem. C 2015, 3, 11129-11134.
[29]
Ko, P. J.; Abderrahmane, A.; Takamura, T.; Kim, N. H.; Sandhu, A. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector. Nanotechnology 2016, 27, 325202.
[30]
Jia, T. H.; Fuh, H. R.; Chen, D. Y.; Abid, M.; Abid, M.; Zhang, D.; Sarker, A. B.; Cho, J.; Choi, M.; Chun, B. S. et al. Giant and linear piezo-phototronic response in layered GaSe nanosheets. Adv. Electron. Mater. 2018, 4, 1700447.
[31]
Cao, Y. F.; Cai, K. M.; Hu, P. G.; Zhao, L. X.; Yan, T. F.; Luo, W. G.; Zhang, X. H.; Wu, X. G.; Wang, K. Y.; Zheng, H. Z. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015, 5, 8130.
Nano Research
Pages 557-563
Cite this article:
Tan L, Liu Q, Ding Y, et al. Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition. Nano Research, 2020, 13(2): 557-563. https://doi.org/10.1007/s12274-020-2653-8
Topics:
Metrics & Citations  
Article History
Copyright
Return