AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The enhanced permeability and retention effect based nanomedicine at the site of injury

Yingjun Liu1,§Dongdong Sun2,§Qin Fan1Qingle Ma1Ziliang Dong1Weiwei Tao2Huiquan Tao1Zhuang Liu1Chao Wang1 ( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China

§ Yingjun Liu and Dongdong Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The enhanced permeability retention (EPR) effect based nanomedicine has been widely used for tumor targeting during the past decades. Here we unexpectedly observed the similar "EPR effect" at the site of injury. We found that the temporary dilated and leaky blood vessels caused by the potent vasodilator histamine in response to injury allowed the injected nanoparticles to pass through the vasculature and reached the injured tissue. Our finding shows the potential underline mechanism of "EPR effect" at the injured site. By loading with antibiotics, we further demonstrated a new strategy for prevention of infection at the site of injury.

Electronic Supplementary Material

Download File(s)
12274_2020_2655_MOESM1_ESM.pdf (2.4 MB)

References

[1]
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
[2]
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.
[3]
Chen, H. M.; Zhang, W. Z.; Zhu, G. Z.; Xie, J.; Chen, X. Y. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2, 17024.
[4]
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.
[5]
Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018, 61, 1503-1552.
[6]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313-2381.
[7]
Youn, Y. S.; Bae, Y. H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 2018, 130, 3-11.
[8]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387-6392.
[9]
Nel, A.; Ruoslahti, E.; Meng, H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 2017, 11, 9567-9569.
[10]
Pober, J. S.; Sessa, W. C. Inflammation and the blood microvascular system. Cold Spring Harb. Perspect. Biol. 2015, 7, a016345.
[11]
Chen, L. L.; Deng, H. D.; Cui, H. M.; Fang, J.; Zuo, Z. C.; Deng, J. L.; Li, Y. L.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204-7218.
[12]
White, M. Mediators of inflammation and the inflammatory process. J. Allergy Clin. Immunol. 1999, 103, S378-S381.
[13]
Branco, A. C. C. C.; Yoshikawa, F. S. Y.; Pietrobon, A. J.; Sato, M. N. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm. 2018, 2018, 9524075.
[14]
Parham, P. The Immune System; Garland Science: New York, 2014.
[15]
Cotran, R. S.; Majno, G. The delayed and prolonged vascular leakage in inflammation. I. Topography of the leaking vessels after thermal injury. Am. J. Pathol. 1964, 45, 261-281.
[16]
Cotran, R. S. The delayed and prolonged vascular leakage in inflammation. II. An electron microscopic study of the vascular response after thermal injury. Am. J. Pathol. 1965, 46, 589-620.
[17]
Ryu, J. K.; McLarnon, J. G. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J. Cell. Mol. Med. 2009, 13, 2911-2925.
[18]
Miles, A. A.; Wilhelm, D. L. The activation of endogenous substances inducing pathological increases of capillary permeability. In The Biochemical Response to Injury; Stoner, H. B.; Threlfall, C. J., Eds.; Blackwell: Semmering, Austria, 1960; pp 51-83.
[19]
Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity 2014, 41, 694-707.
[20]
Dale, H. H.; Richards, A. N. The vasodilator action of histamine and of some other substances. J. Physiol. 1918, 52, 110-165.
[21]
Heitz, D. C.; Brody, M. J. Possible mechanism of histamine release during active vasodilatation. Am. J. Physiol. 1975, 228, 1351-1357.
[22]
Weissleder, R.; Nahrendorf, M.; Pittet, M. J. Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125-138.
[23]
Chen, X. Y.; Wong, R.; Khalidov, I.; Wang, A. Y.; Leelawattanachai, J.; Wang, Y.; Jin, M. M. Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation. Biomaterials 2011, 32, 7651-7661.
[24]
Song, G.; Petschauer, J. S.; Madden, A. J.; Zamboni, W. C. Nanoparticles and the mononuclear phagocyte system: Pharmacokinetics and applications for inflammatory diseases. Curr. Rheumatol. Revi. 2014, 10, 22-34.
[25]
Chu, D. F.; Gao, J.; Wang, Z. J. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 2015, 9, 11800-11811.
[26]
Pridgen, E. M.; Langer, R.; Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2007, 2, 669-680.
[27]
Mohamed, H. A.; Radwan, R. R.; Raafat, A. I.; Ali, A. E. H. Antifungal activity of oral (tragacanth/acrylic acid) amphotericin B carrier for systemic candidiasis: In vitro and in vivo study. Drug Deliv. Transl. Res.2018, 8, 191-203.
[28]
López-Ribot, J. L.; Casanova, M.; Murgui, A.; Martínez, J. P. Antibody response to Candida albicans cell wall antigens. FEMS Immunol. Med. Microbiol. 2004, 41, 187-196.
Nano Research
Pages 564-569
Cite this article:
Liu Y, Sun D, Fan Q, et al. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Research, 2020, 13(2): 564-569. https://doi.org/10.1007/s12274-020-2655-6
Topics:

828

Views

62

Crossref

N/A

Web of Science

61

Scopus

4

CSCD

Altmetrics

Received: 30 September 2019
Revised: 30 December 2019
Accepted: 10 January 2020
Published: 24 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return