AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials

Hongxin ZhangZi-Han ChenXuan LiuFan Zhang( )
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

Abstract

Trivalent lanthanide (Ln3+) doped luminescent nanocrystals are promising for applications ranging from biosensor, lasing, super-resolution nanoscopy, information security and so on. Although the utility prospect is of great attractions, the light absorption of these lanthanide doped nanocrystals is inherently weak due to the electric dipole-forbidden 4f → 4f transitions. Even worse, the quantum yields of upconverison nanocrystals are very low, which will unavoidably hinder their further applications. In a typical lanthanide luminescent nanosystem, both sensitizers as light absorption centers and activators as light emitting centers are necessary and important for desired luminescence properties. Among various sensitization systems, only Yb3+ and Nd3+ are considered as the most efficient sensitizers. Thus, the corresponding excitation wavelengths are strictly limited around 980 and 808 nm. To enrich excitation wavelengths and boost luminescence intensity, exploring more sensitization units that possess larger absorption cross section, higher efficiency of energy transfer process and independent excitation is imperative and beneficial for the demands of different applications, such as broadened absorption in near infrared (NIR) region for higher conversion efficiency of solar cells, prolonged excitation wavelength to second near infrared windows region (NIR II, 1,000-1,700 nm) for in vivo fluorescence imaging with deeper tissue depth and higher spatial resolution, more orthogonal excitations and emissions to improve optical multiplexing, and so on. Therefore, in the review, we primarily conclude several major energy transfer mechanisms from sensitizers to activators. Then we present three kinds of sensitizers, including lanthanide ions, organic dyes and quantum dots (QDs), and introduce the newly designed sensitization system that allows us to exploit superior excitation wavelength and amplify luminescence intensity. Finally, several future challenges and opportunities for the sensitizing strategies are discussed in hope of directing and broadening the applications of lanthanide nanosystem.

References

[1]
Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139-173.
[2]
Fan, Y.; Liu, L.; Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today 2019, 25, 68-84.
[3]
Chen, X.; Peng, D. F.; Ju, Q.; Wang, F. Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev. 2015, 44, 1318-1330.
[4]
Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346-1378.
[5]
Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
[6]
Yeh, D. C.; Sibley, W. A.; Suscavage, M. J. Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium fluoride glass. J. Appl. Phys. 1988, 63, 4644-4650.
[7]
Tanabe, S.; Yoshii, S.; Hirao, K.; Soga, N. Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses. Phys. Rev. B 1992, 45, 4620-4625.
[8]
Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.
[9]
Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462-465.
[10]
Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941-946.
[11]
Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 32-36.
[12]
Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229-233.
[13]
Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.
[14]
Kostyuk, A. B.; Vorotnov, A. D.; Ivanov, A. V.; Volovetskiy, A. B.; Kruglov, A. V.; Sencha, L. M.; Liang, L. E.; Guryev, E. L.; Vodeneev, V. A.; Deyev, S. M. et al. Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Res. 2019, 12, 2933-2940.
[15]
Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle- mediated optogenetics. Science 2018, 359, 679-684.
[16]
Fernandez-Bravo, A.; Yao, K. Y.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B. N.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 2018, 13, 572-577.
[17]
Chen, X.; Jin, L. M.; Kong, W.; Sun, T. Y.; Zhang, W. F.; Liu, X. H.; Fan, J.; Yu, S. F.; Wang, F. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 2016, 7, 10304.
[18]
Guo, Q. Y.; Wu, J. H.; Yang, Y. Q.; Liu, X. P.; Jia, J. B.; Dong, J.; Lan, Z.; Lin, J. M.; Huang, M. L.; Wei, Y. L. et al. High performance perovskite solar cells based on β-NaYF4: Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. J. Power Sources 2019, 426, 178-187.
[19]
Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.
[20]
Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed. 2019, 58, 10153-10157.
[21]
Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322-1331.
[22]
Liu, L.; Wang, S. F.; Zhao, B. Z.; Pei, P.; Fan, Y.; Li, X. M.; Zhang, F. Er3+ sensitized 1,530 nm to 1,180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem., Int. Ed. 2018, 57, 7518-7522.
[23]
Lei, X. L.; Li, R. F.; Tu, D. T.; Shang, X. Y.; Liu, Y.; You, W. W.; Sun, C. X.; Zhang, F.; Chen, X. Y. Intense near-infrared-II luminescence from NaCeF4: Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem. Sci. 2018, 9, 4682-4688.
[24]
Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643.
[25]
Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.
[26]
Shen, J.; Chen, G. Y.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644-650.
[27]
Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275-3282.
[28]
Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem., Int. Ed. 2017, 56, 7605-7609.
[29]
Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941-7946.
[30]
Savchuk, O. A.; Carvajal, J. J.; Brites, C. D. S.; Carlos, L. D.; Aguilo, M.; Diaz, F. Upconversion thermometry: A new tool to measure the thermal resistance of nanoparticles. Nanoscale 2018, 10, 6602-6610.
[31]
Zhang, H. X.; Jia, T. Q.; Chen, L.; Zhang, Y. C.; Zhang, S.; Feng, D. H.; Sun, Z. R.; Qiu, J. R. Depleted upconversion luminescence in NaYF4: Yb3+, Tm3+ nanoparticles via simultaneous two-wavelength excitation. Phys. Chem. Chem. Phys. 2017, 19, 17756-17764.
[32]
Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 9556-9560.
[33]
Sun, T. Y.; Chen, X.; Jin, L. M.; Li, H. W.; Chen, B.; Fan, B.; Moine, B.; Qiao, X.; Fan, X. P.; Tsang, S. W. et al. Broadband Ce(III)-sensitized quantum cutting in core-shell nanoparticles: Mechanistic investigation and photovoltaic application. J. Phys. Chem. Lett. 2017, 8, 5099-5104.
[34]
Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided "Off-On" therapy. ACS Nano 2018, 12, 3217-3225.
[35]
Cheng, X. W.; Pan, Y.; Yuan, Z.; Wang, X. W.; Su, W. H.; Yin, L. S.; Xie, X. J.; Huang, L. Er3+ sensitized photon upconversion nanocrystals. Adv. Funct. Mater. 2018, 28, 1800208.
[36]
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560-564.
[37]
Xue, B.; Wang, D.; Tu, L. P.; Sun, D. P.; Jing, P. T.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Zuo, J.; Song, J. et al. Ultrastrong absorption meets ultraweak absorption: Unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence. J. Phys. Chem. Lett. 2018, 9, 4625-4631.
[38]
Wang, X. D.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C. H.; Chen, G. Y. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150-4167.
[39]
Zhou, D. L.; Sun, R.; Xu, W.; Ding, N.; Li, D. Y.; Chen, X.; Pan, G. C.; Bai, X.; Song, H. W. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett. 2019, 19, 6904-6913.
[40]
Swabeck, J. K.; Fischer, S.; Bronstein, N. D.; Alivisatos, A. P. Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting. J. Am. Chem. Soc. 2018, 140, 9120-9126.
[41]
Song, D.; Chi, S. Y.; Li, X.; Wang, C. X.; Li, Z.; Liu, Z. H. Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency. ACS Appl. Mater. Interfaces 2019, 11, 41100-41108.
[42]
Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Torquato, N. A.; Tajon, C. A.; Tian, B. N.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics 2018, 12, 402-407.
[43]
Zhang, H. X.; Jia, T. Q.; Shang, X. Y.; Zhang, S. A.; Sun, Z. R.; Qiu, J. R. Mechanisms of the blue emission of NaYF4:Tm3+ nanoparticles excited by an 800 nm continuous wave laser. Phys. Chem. Chem. Phys. 2016, 18, 25905-25914.
[44]
Zuo, J.; Sun, D. P.; Tu, L. P.; Wu, Y. N.; Cao, Y. H.; Xue, B.; Zhang, Y. L.; Chang, Y. L.; Liu, X. M.; Kong, X. G. et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures. Angew. Chem., Int. Ed. 2018, 57, 3054-3058.
[45]
Yan, L.; Zhou, B.; Song, N.; Liu, X. L.; Huang, J. S.; Wang, T.; Tao, L. L.; Zhang, Q. Y. Self-sensitization induced upconversion of Er3+ in core-shell nanoparticles. Nanoscale 2018, 10, 17949-17957.
[46]
Sun, T. Y.; Li, Y. H.; Ho, W. L.; Zhu, Q.; Chen, X.; Jin, L. M.; Zhu, H. M.; Huang, B. L.; Lin, J.; Little, B. E. et al. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nat. Commun. 2019, 10, 1811.
[47]
Xie, X. J.; Gao, N. Y.; Deng, R. R.; Sun, Q.; Xu, Q. H.; Liu, X. G. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 2013, 135, 12608-12611.
[48]
Wen, S. H.; Zhou, J. J.; Schuck, P. J.; Suh, Y. D.; Schmidt, T. W.; Jin, D. Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828-838.
[49]
Liang, L. L.; Qin, X.; Zheng, K. Z.; Liu, X. G. Energy flux manipulation in upconversion nanosystems. Acc. Chem. Res. 2019, 52, 228-236.
[50]
Chen, G. Y.; Shao, W.; Valiev, R. R.; Ohulchanskyy, T. Y.; He, G. S.; Ågren, H.; Prasad, P. N. Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals. Adv. Opt. Mater. 2016, 4, 1760-1766.
[51]
Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729-734.
[52]
Gu, Y. Y.; Guo, Z. Y.; Yuan, W.; Kong, M. Y.; Liu, Y. L.; Liu, Y. T.; Gao, Y. L.; Feng, W.; Wang, F.; Zhou, J. J. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 2019, 13, 525-531.
[53]
Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 2015, 44, 1653-1679.
[54]
Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J. et al. Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging. ACS Nano 2016, 10, 8423-8433.
[55]
Chen, C. C.; Wang, F.; Wen, S. H.; Su, Q. P.; Wu, M. C. L.; Liu, Y. T.; Wang, B. M.; Li, D.; Shan, X. C.; Kianinia, M. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 2018, 9, 3290.
[56]
Lei, L.; Xia, H.; Lim, C. K.; Xu, S. Q.; Wang, K.; Du, Y. P.; Prasad, P. N. Modulation of surface energy transfer cascade for reversible photoluminescence pH sensing. Chem. Mater. 2019, 31, 8121-8128.
[57]
Kim, S. Y.; Woo, K.; Lim, K.; Lee, K.; Jang, H. S. Highly bright multicolor tunable ultrasmall β-Na(Y, Gd)F4: Ce, Tb, Eu/β-NaYF4 core/shell nanocrystals. Nanoscale 2013, 5, 9255-9263.
[58]
Zhou, B.; Tao, L. L.; Chai, Y.; Lau, S. P.; Zhang, Q. Y.; Tsang, Y. H. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure. Angew. Chem., Int. Ed. 2016, 55, 12356-12360.
[59]
Chen, X.; Jin, L. M.; Sun, T. Y.; Kong, W.; Yu, S. F.; Wang, F. Energy migration upconversion in Ce(III)-doped heterogeneous core-shell-shell nanoparticles. Small 2017, 13, 1701479.
[60]
Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 2015, 15, 7400-7407.
[61]
Wang, D.; Wang, D. P.; Kuzmin, A.; Pliss, A.; Shao, W.; Xia, J.; Qu, J. L.; Prasad, P. N. ICG-sensitized NaYF4: Er nanostructure for theranostics. Adv. Opt. Mater. 2018, 6, 1701142.
[62]
Xu, J. T.; Gulzar, A.; Liu, Y. H.; Bi, H. T.; Gai, S. L.; Liu, B.; Yang, D.; He, F.; Yang, P. P. Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small 2017, 13, 1701841.
[63]
Hazra, C.; Ullah, S.; Serge Correales, Y. E.; Caetano, L. G.; Ribeiro, S. J. L. Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles. J. Mater. Chem. C 2018, 6, 4777-4785.
[64]
Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1,064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem., Int. Ed. 2018, 57, 7483-7487.
[65]
Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
[66]
Zheng, W.; Huang, P.; Gong, Z. L.; Tu, D. T.; Xu, J.; Zou, Q. L.; Li, R. F.; You, W. W.; Bünzli, J. C. G.; Chen, X. Y. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018, 9, 3462.
[67]
Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 2016, 7, 12749.
[68]
Klik, M. A. J.; Gregorkiewicz, T.; Bradley, I. V.; Wells, J. P. R. Optically induced deexcitation of rare-earth ions in a semiconductor matrix. Phys. Rev. Lett. 2002, 89, 227401.
[69]
Martín-Rodríguez, R.; Geitenbeek, R.; Meijerink, A. Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J. Am. Chem. Soc. 2013, 135, 13668-13671.
[70]
Zhou, D. L.; Liu, D. L.; Pan, G. C.; Chen, X.; Li, D. Y.; Xu, W.; Bai, X.; Song, H. W. Cerium and ytterbium codoped halide perovskite quantum dots: A novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 2017, 29, 1704149.
[71]
Milstein, T. J.; Kroupa, D. M.; Gamelin, D. R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 2018, 18, 3792-3799.
[72]
Zhou, J. J.; Deng, J. Y.; Zhu, H. M.; Chen, X. Y.; Teng, Y.; Jia, H.; Xu, S. Q.; Qiu, J. R. Up-conversion luminescence in LaF3: Ho3+ via two-wavelength excitation for use in solar cells. J. Mater. Chem. C 2013, 1, 8023-8027.
[73]
Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed. 2016, 55, 2464-2469.
[74]
You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 2019, 12, 1417-1422.
[75]
Wang, Y.; Zheng, K. Z.; Song, S. Y.; Fan, D. Y.; Zhang, H. J.; Liu, X. G. Remote manipulation of upconversion luminescence. Chem. Soc. Rev. 2018, 47, 6473-6485.
[76]
Yin, X. M.; Wang, H.; Tian, Y.; Xing, M. M.; Fu, Y.; Luo, X. X. Three primary color emissions from single multilayered nanocrystals. Nanoscale 2018, 10, 9673-9678.
[77]
Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.
[78]
Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920-18929.
[79]
Zhang, H.; Li, Y. J.; Lin, Y. C.; Huang, Y.; Duan, X. F. Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nanocrystals. Nanoscale 2011, 3, 963-966.
[80]
Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015, 44, 1635-1652.
[81]
Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416-1448.
[82]
Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.
[83]
Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Wang, D.; He, S. L.; Zhang, Z. G.; Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 2011, 5, 3744-3757.
[84]
Zhan, Q. Q.; He, S. L.; Qian, J.; Cheng, H.; Cai, F. H. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield. Theranostics 2013, 3, 306-316.
[85]
Ortgies, D. H.; Tan, M. L.; Ximendes, E. C.; Del Rosal, B.; Hu, J.; Xu, L.; Wang, X. D.; Martín Rodríguez, E.; Jacinto, C.; Fernandez, N. et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 2018, 12, 4362-4368.
[86]
Cao, C.; Xue, M.; Zhu, X. J.; Yang, P. Y.; Feng, W.; Li, F. Y. Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 18540-18548.
[87]
Petit, V.; Camy, P.; Doualan, J. L.; Moncorgé, R. CW and tunable laser operation of Yb3+ in Nd: Yb: CaF2. Appl. Phys. Lett. 2006, 88, 051111.
[88]
Liu, Y. X; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem., Int. Ed. 2013, 52, 4366-4369.
[89]
Zhou, J. J.; Shirahata, N.; Sun, H. T.; Ghosh, B.; Ogawara, M.; Teng, Y.; Zhou, S. F.; Chu, R. G. S.; Fujii, M.; Qiu, J. R. Efficient dual-modal NIR-to-NIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging. J. Phys. Chem. Lett. 2013, 4, 402-408.
[90]
Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237-242.
[91]
He, F.; Yang, G. X.; Yang, P. P.; Yu, Y. X.; Lv, R. C.; Li, C. X.; Dai, Y. L.; Gai, S. L.; Lin, J. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform. Adv. Funct. Mater. 2015, 25, 3966-3976.
[92]
Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434-3446.
[93]
Wang, H.; Liu, Y.; Wang, Z. H.; Yang, M.; Gu, Y. Q. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. Nanoscale 2018, 10, 10641-10649.
[94]
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1,525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086-12090.
[95]
Dong, H.; Sun, L. D.; Feng, W.; Gu, Y. Y.; Li, F. Y.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano 2017, 11, 3289-3297.
[96]
Liu, B.; Li, C. X.; Yang, P. P.; Hou, Z. Y.; Lin, J. 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications. Adv. Mater. 2017, 29, 1605434.
[97]
Cheng, X. W.; Ge, H.; Wei, Y.; Zhang, K.; Su, W. H.; Zhou, J. M.; Yin, L. S.; Zhan, Q. Q.; Jing, S.; Huang, L. Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions. ACS Nano 2018, 12, 10992-10999.
[98]
Xie, S. W.; Gong, G.; Song, Y.; Tan, H. H.; Zhang, C. F.; Li, N.; Zhang, Y. X.; Xu, L. J.; Xu, J. X.; Zheng, J. Design of novel lanthanide-doped core-shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing. Dalton Trans. 2019, 48, 6971-6983.
[99]
Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723-730.
[100]
Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235-242.
[101]
Ding, F.; Fan, Y.; Sun, Y.; Zhang, F. Beyond 1,000 nm emission wavelength: Recent advances in organic and inorganic emitters for deep-tissue molecular imaging. Adv. Healthc. Mater. 2019, 8, 1900260.
[102]
Zhang, X. B.; Chen, W. W.; Xie, X. Y.; Li, Y. Y.; Chen, D. S.; Chao, Z. C.; Liu, C. H.; Ma, H. B.; Liu, Y.; Ju, H. X. Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone. Angew. Chem., Int. Ed. 2019, 58, 12117-12122.
[103]
Ke, J. X.; Lu, S.; Shang, X. Y.; Liu, Y.; Guo, H. H.; You, W. W.; Li, X. J.; Xu, J.; Li, R. F.; Chen, Z. et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection. Adv. Sci. 2019, 6, 1901874.
[104]
Zou, X. M.; Zhou, X. B.; Cao, C.; Lu, W. Y.; Yuan, W.; Liu, Q.Y.; Feng, W.; Li, F. Y. Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite in vivo. Nanoscale 2019, 11, 2959-2965.
[105]
Zhang, D. L.; Wang, L. L.; Yuan, X.; Gong, Y. J.; Liu, H. W.; Zhang, J.; Zhang, X. B.; Liu, Y. L.; Tan, W. H. Naked-eye readout of analyte-induced NIR fluorescence responses by an initiation-input-transduction nanoplatform. Angew. Chem., Int. Ed. 2020, 59, 695-699.
[106]
Liang, T.; Li, Z.; Wang, P. P.; Zhao, F. Z.; Liu, J. Z.; Liu, Z. H. Breaking through the signal-to-background limit of upconversion nanoprobes using a target-modulated sensitizing switch. J. Am. Chem. Soc. 2018, 140, 14696-14703.
[107]
Shao, W.; Chen, G. Y.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc. 2016, 138, 16192-16195.
[108]
Lee, J.; Yoo, B.; Lee, H.; Cha, G. D.; Lee, H. S.; Cho, Y.; Kim, S. Y.; Seo, H.; Lee, W.; Son, D. et al. Ultra-wideband multi-dye-sensitized upconverting nanoparticles for information security application. Adv. Mater. 2017, 29, 1603169.
[109]
Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.
[110]
Mukherjee, P.; Sloan, R. F.; Shade, C. M.; Waldeck, D. H.; Petoud, S. A postsynthetic modification of II-VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J. Phys. Chem. C 2013, 117, 14451-14460.
[111]
Chengelis, D. A.; Yingling, A. M.; Badger, P. D.; Shade, C. M.; Petoud, S. Incorporating lanthanide cations with cadmium selenide nanocrystals: A strategy to sensitize and protect Tb(III). J. Am. Chem. Soc. 2005, 127, 16752-16753.
[112]
Creutz, S. E.; Fainblat, R.; Kim, Y.; De Siena, M. C.; Gamelin, D. R. A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission. J. Am. Chemi. Soc. 2017, 139, 11814-11824.
[113]
Hu, Q. S.; Li, Z.; Tan, Z. F.; Song, H. B.; Ge, C.; Niu, G. D.; Han, J. T.; Tang, J. Rare earth ion-doped CsPbBr3 nanocrystals. Adv. Opt. Mater. 2018, 6, 1700864.
[114]
Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005-8011.
Nano Research
Pages 1795-1809
Cite this article:
Zhang H, Chen Z-H, Liu X, et al. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Research, 2020, 13(7): 1795-1809. https://doi.org/10.1007/s12274-020-2661-8
Topics:
Part of a topical collection:

1084

Views

96

Crossref

N/A

Web of Science

101

Scopus

0

CSCD

Altmetrics

Received: 30 November 2019
Revised: 13 January 2020
Accepted: 14 January 2020
Published: 17 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return