AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices

Hyo Chan Lee1,§Ezekiel Y. Hsieh1,§Keong Yong1SungWoo Nam1,2,3,4,5( )
Department of Mechanical Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801, USA
Department of Materials Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801, USA
Materials Research Laboratory, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801, USA
Micro and Nanotechnology Laboratory, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801, USA
Carle Illinois College of Medicine, University of Illinois at Urbana - Champaign, Champaign, Illinois 61820, USA

§ Hyo Chan Lee and Ezekiel Y. Hsieh contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In wearable electronics, significant research has gone into imparting stretchability and flexibility to otherwise rigid electronic components while maintaining their electrical properties. Thus far, this has been achieved through various geometric modifications of the rigid conductive components themselves, such as with microcracked, buckled, or planar meander structures. Additionally, strategic placement of these resulting components within the overall devices, such as embedding them at the neutral plane, has been found to further enhance mechanical stability under deformation. However, these strategies are still limited in performance, failing to achieve fully strain-insensitive electrical performance under biaxial stretching, twisting, and mixed strain states. Here, we developed a new platform for wearable, motion artifact-free sensors using a graphene-based multiaxially stretchable kirigami-patterned mesh structure. The normalized resistance change of the electrodes and graphene embedded in the structure is smaller than 0.5% and 0.23% under 180° torsion and 100% biaxial strain, respectively. Moreover, the resistance change is limited to 5% under repeated stretching-releasing cycles from 0% to 100% biaxial strain. In addition, we investigated the deformation mechanisms of the structure with finite element analysis. Based on the simulation results, we derived a dimensionless geometric parameter that enables prediction of stretchability of the structure with high accuracy. Lastly, as a proof-of-concept, we demonstrated a biaxially-stretchable graphene-based sensor array capable of monitoring of temperature and glucose level with minimized motion-artifacts.

Electronic Supplementary Material

Download File(s)
12274_2020_2662_MOESM1_ESM.pdf (3 MB)

References

[1]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[2]
Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.
[3]
Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389-406.
[4]
Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N. S.; Hyeon, T. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566-572.
[5]
Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
[6]
Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160-171.
[7]
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296-301.
[8]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[9]
Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675-18680.
[10]
Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907-913.
[11]
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986-994.
[12]
Hong, G. S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for single-neuron chronic recording from the retina in awake mice. Science 2018, 360, 1447-1451.
[13]
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629-636.
[14]
Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511-517.
[15]
Fu, T. M.; Hong, G. S.; Viveros, R. D.; Zhou, T.; Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl. Acad. Sci. USA 2017, 114, E10046-E10055.
[16]
Blees, M. K.; Barnard, A. W.; Rose, P. A.; Roberts, S. P.; McGill, K. L.; Huang, P. Y.; Ruyack, A. R.; Kevek, J. W.; Kobrin, B.; Muller, D. A. et al. Graphene kirigami. Nature 2015, 524, 204-207.
[17]
Song, Z. M.; Wang, X.; Lv, C.; An, Y. H.; Liang, M. B.; Ma, T.; He, D.; Zheng, Y. J.; Huang, S. Q.; Yu, H. Y. et al. Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 2015, 5, 10988.
[18]
Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S. R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 2015, 6, 8092.
[19]
Won, P.; Park, J. J.; Lee, T.; Ha, I.; Han, S.; Choi, M.; Lee, J.; Hong, S.; Cho, K. J.; Ko, S. H. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 2019, 19, 6087-6096.
[20]
Tang, Y. C.; Lin, G. J.; Yang, S.; Yi, Y. K.; Kamien, R. D.; Yin, J. Programmable kiri-kirigami metamaterials. Adv. Mater. 2017, 29, 1604262.
[21]
Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785-789.
[22]
Morikawa, Y.; Yamagiwa, S.; Sawahata, H.; Numano, R.; Koida, K.; Ishida, M.; Kawano, T. Ultrastretchable kirigami bioprobes. Adv. Healthc. Mater. 2018, 7, 1701100.
[23]
Xu, R. X.; Zverev, A.; Hung, A.; Shen, C. W.; Irie, L.; Ding, G.; Whitmeyer, M.; Ren, L. J.; Griffin, B.; Melcher, J. et al. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng. 2018, 4, 36.
[24]
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
[25]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
[26]
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
[27]
Chung, C.; Kim, Y. K.; Shin, D.; Ryoo, S. R.; Hong, B. H.; Min, D. H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 2013, 46, 2211-2224.
[28]
Snapp, P.; Kang, P.; Leem, J.; Nam, S. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater. 2019, 29, 1902216.
[29]
Kang, P.; Wang, M. C.; Knapp, P. M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639-4645.
[30]
Yong, K.; De, S.; Hsieh, E. Y.; Leem, J.; Aluru, N. R.; Nam, S. W. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today, in press, .
[31]
Isobe, M.; Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 2016, 6, 24758.
[32]
Lu, N. S.; Wang, X.; Suo, Z. G.; Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 2007, 91, 221909.
[33]
Matsuhisa, N.; Jiang, Y.; Liu, Z. Y.; Chen, G.; Wan, C. J.; Kim, Y.; Kang, J.; Tran, H.; Wu, H. C.; You, I. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 2019, 5, 1900347.
[34]
Cao, W. Z.; Görrn, P.; Wagner, S. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates. Appl. Phys. Lett. 2011, 98, 212112.
[35]
Lee, S. K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011, 11, 4642-4646.
[36]
Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482-2505.
[37]
Huang, Y. X.; Dong, X. C.; Shi, Y. M.; Li, C. M.; Li, L. J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485-1488.
[38]
Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.
[39]
Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.
Nano Research
Pages 1406-1412
Cite this article:
Chan Lee H, Y. Hsieh E, Yong K, et al. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Research, 2020, 13(5): 1406-1412. https://doi.org/10.1007/s12274-020-2662-7
Topics:

720

Views

42

Crossref

N/A

Web of Science

38

Scopus

0

CSCD

Altmetrics

Received: 06 November 2019
Revised: 21 December 2019
Accepted: 14 January 2020
Published: 24 January 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return