AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts

Jacob S. BergerHo-Seok EeMingliang RenDaksh AgarwalWenjing LiuRitesh Agarwal( )
Walnut St., Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia 19104, USA
Show Author Information

Graphical Abstract

Abstract

Nanowires (NWs) and nanobelts (NBs) have been widely studied and fabricated into a variety of nanoscale devices such as light emitting diodes (LEDs), lasers and biosensors. These unique materials have attracted sustained attention due to their novel properties, ease of growth, and the ability to fabricate highly engineered devices. However, their widespread application remains hindered due to the difficulty in integrating multiple NWs or NBs together for more complex devices. Integration of multiple NWs and NBs together on the same chip can enable the coupling of different devices to help realize complex on-chip architectures such as photonic integrated circuits or nanoscale diagnostic tools, which currently require outcoupling using larger components. In this letter we report the coupling of on-chip NB LEDs and photodetectors using a single, precisely self-aligned, cadmium sulfide (CdS) NB fabricated on a silicon-on-insulator (SOI) substrate. Electroluminescence generated by the CdS NB is waveguided and measured across the self-aligned device and demonstrates an on/off ratio of 102-103. This work describes a new method for fabricating and integrating more complex nanoscale devices that can enable advances in areas such as on-chip optical computational components and nanoscale optical biodiagnostics.

Electronic Supplementary Material

Download File(s)
12274_2020_2663_MOESM1_ESM.pdf (866.9 KB)

References

[1]
Gao, Z. W.; Jin, W. F.; Li, Y. P.; Song, Q. J.; Wang, Y. L.; Zhang, K.; Wang, S.; Dai, L. Flexible solar cells based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. C 2015, 3, 4511-4514.
[2]
Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710-714.
[3]
Ye, Y.; Dai, Y.; Dai, L.; Shi, Z. J.; Liu, N.; Wang, F.; Fu, L.; Peng, R. M.; Wen, X. N.; Chen, Z. J. et al. High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/ Graphene schottky electrodes. ACS Appl. Mater. Interfaces 2010, 2, 3406-3410.
[4]
Zhang, X. W.; Zhang, X. J.; Wang, L.; Wu, Y. M.; Wang, Y.; Gao, P.; Han, Y. Y.; Jie, J. S. ZnSe nanowire/Si p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 24, 395201.
[5]
Agarwal, D.; Aspetti, C. O.; Cargnello, M.; Ren, M. L.; Yoo, J.; Murray, C. B.; Agarwal, R. Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett. 2017, 17, 1839-1845.
[6]
Wei, T. Y.; Huang, C. T.; Hansen, B. J.; Lin, Y. F.; Chen, L. J.; Lu, S. Y.; Wang, Z. L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl. Phys. Lett. 2010, 96, 013508.
[7]
Gao, T.; Li, Q. H.; Wang, T. H. CdS nanobelts as photoconductors. Appl. Phys. Lett. 2005, 86, 173105.
[8]
Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Li, Y. Q.; Lee, S. T. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 2006, 6, 1887-1892.
[9]
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.
[10]
Fan, P. Y.; Huang, K. C. Y.; Cao, L. Y.; Brongersma, M. L. Redesigning photodetector electrodes as an optical antenna. Nano Lett. 2013, 13, 392-396.
[11]
Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241-245.
[12]
Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629-632.
[13]
Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719-1722.
[14]
Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639-1644.
[15]
Zimmler, M. A.; Stichtenoth, D.; Ronning, C.; Yi, W.; Narayanamurti, V.; Voss, T.; Capasso, F. Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass. Nano Lett. 2008, 8, 1695-1699.
[16]
Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2009, 21, 015501.
[17]
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260-4269.
[18]
Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100-1104.
[19]
Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180-184.
[20]
Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.
[21]
Piccione, B.; Cho, C. H.; van Vugt, L. K.; Agarwal, R. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol. 2012, 7, 640-645.
[22]
Tchernycheva, M.; Messanvi, A.; de Luna Bugallo, A.; Jacopin, G.; Lavenus, P.; Rigutti, L.; Zhang, H.; Halioua, Y.; Julien, F. H.; Eymery, J. et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett. 2014, 14, 3515-3520.
[23]
Brubaker, M. D.; Blanchard, P. T.; Schlager, J. B.; Sanders, A. W.; Roshko, A.; Duff, S. M.; Gray, J. M.; Bright, V. M.; Sanford, N. A.; Bertness, K. A. On-chip optical interconnects made with Gallium Nitride nanowires. Nano Lett. 2013, 13, 374-377.
[24]
Agarwal, D.; Ren, M. L.; Berger, J. S.; Yoo, J.; Pan, A. L.; Agarwal, R. Nanocavity-enhanced giant stimulated Raman scattering in Si nanowires in the visible light region. Nano Lett. 2019, 19, 1204-1209.
[25]
Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569-576.
[26]
Shoaib, M.; Wang, X. X.; Zhang, X. H.; Zhang, Q. L.; Pan, A. L. Controllable vapor growth of large-area aligned CdSxSe1-x nanowires for visible range integratable photodetectors. Nano-Micro Lett. 2018, 10, 58.
[27]
Shoaib, M.; Zhang, X. H.; Wang, X. X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X. L.; Liu, H. W.; Fan, X. P.; Zheng, W. H. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 2017, 139, 15592-15595.
[28]
Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo. J.; Mallouk, T. E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000, 77, 1399-1401.
[29]
Koto, M.; Leu, P. W.; McIntyre, P. C. Vertical germanium nanowire arrays in microfluidic channels for charged molecule detection. J. Electrochem. Soc. 2009, 156, K11-K16.
[30]
Lee, S. H.; Lee, H. J.; Oh, D.; Lee, S. W.; Goto, H.; Buckmaster, R.; Yasukawa, T.; Matsue, T.; Hong, S. K.; Ko, M. W. C. et al. Control of the ZnO nanowires nucleation site using microfluidic channels. J. Phys. Chem. B 2006, 110, 3856-3859.
[31]
Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.
[32]
Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754-1757.
[33]
Messer, B.; Song, J. H.; Yang, P. D. Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 2000, 122, 10232-10233.
[34]
Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915-919.
[35]
Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.
[36]
Ko, J.; Carpenter, E.; Issadore, D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 2016, 141, 450-460.
[37]
Im, H.; Shao, H. L.; Park, Y. I.; Peterson, V. M.; Castro, C. M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, 490-495.
[38]
Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017-14022.
[39]
Bieniewski, T. M.; Czyzak, S. J. Refractive indexes of single hexagonal ZnS and CdS crystals. J. Opt. Soc. Am. 1963, 53, 496-497.
[40]
Jellison, G. E.,Jr. Optical functions of silicon determined by two-channel polarization modulation ellipsometry. Opt. Mater. 1992, 1, 41-47.
[41]
Piccione, B.; van Vugt, L. K.; Agarwal, R. Propagation loss spectroscopy on single nanowire active waveguides. Nano Lett. 2010, 10, 2251-2256.
[42]
van Vugt, L. K.; Zhang, B.; Piccione, B.; Spector, A. A.; Agarwal, R. Size-dependent waveguide dispersion in nanowire optical cavities: Slowed light and dispersionless guiding. Nano Lett. 2009, 9, 1684-1688.
[43]
Qian, F.; Gradečak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/ Multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287-2291.
[44]
Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett. 2009, 94, 241120.
[45]
Wu, P. C.; Ma. R. M.; Liu, C.; Sun, T.; Ye, Y.; Dai, L. High-performance CdS nanobelt field-effect transistors with high-k HfO2 top-gate dielectrics. J. Mater. Chem. 2009, 19, 2125-2130.
[46]
Green, M. A.; Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 1995, 3, 189-192.
[47]
Li, Q. H.; Gao, T.; Wang, T. H. Optoelectronic characteristics of single CdS nanobelts. Appl. Phys. Lett. 2005, 86, 193109.
[48]
Paul, G. S.; Agarwal, P. Persistent photocurrent and decay studies in CdS nanorods thin films. J. Appl. Phys. 2009, 106, 103705.
[49]
Yin, H.; Akey, A.; Jaramillo, R. Large and persistent photoconductivity due to hole-hole correlation in CdS. Phys. Rev. Mater. 2018, 2, 084602.
[50]
van Vugt, L. K.; Piccione, B.; Cho, C. H.; Nukala, P.; Agarwal, R. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires. Proc. Natl. Acad. Sci. USA 2011, 108, 10050-10055.
[51]
van Vugt, L. K.; Piccione, B.; Agarwal, R. Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl. Phys. Lett. 2010, 97, 061115.
[52]
Piccione, B.; Aspetti, C. O.; Cho, C. H.; Agarwal, R. Tailoring light- matter coupling in semiconductor and hybrid-plasmonic nanowires. Rep. Prog. Phys. 2014, 77, 086401.
Nano Research
Pages 1413-1418
Cite this article:
Berger JS, Ee H-S, Ren M, et al. Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts. Nano Research, 2020, 13(5): 1413-1418. https://doi.org/10.1007/s12274-020-2663-6
Topics:

804

Views

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 06 November 2019
Revised: 02 January 2020
Accepted: 14 January 2020
Published: 20 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return