AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts

Wenjuan Lei1,2,4,§Menggang Li2,§Lin He2Xun Meng2Zijie Mu3Yongsheng Yu1,2( )Frances M. Ross4( )Weiwei Yang2( )
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
Ministry of Industry and Information Technology, Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

§ Wenjuan Lei and Menggang Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The morphology and size of Pt-based bimetallic alloys are known to determine their electrocatalytic performance in reactions relevant to fuel cells. Here, we report a general approach for preparing Pt-M (M = Fe, Co and Ni) bimetallic nano-branched structure (NBs) by a simple high temperature solution-phase synthesis. As-prepared Pt-M NBs show a polycrystalline structure and are rich in steps and kinks on the surface, which promote them favorable bifunctional catalytic properties in acidic electrolytes, specifically in terms of the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). Specially, Pt-Co NBs/C catalyst shows 6.1 and 5.3 times higher in specific activity (SA) and mass activity (MA) for ORR than state-of-the-art commercial Pt/C catalysts, respectively. Moreover, it exhibits a loss of 4.0% in SA and 14.4% in MA after 10,000 cycles of accelerated durability tests (ADTs) compared with the initial activities. In addition, we also confirmed the superior MOR activity of Pt-Co NBs/C catalyst in acidic electrolytes. For Pt-M NBs with other alloying metals, the ORR and MOR activities are both higher than commercial catalysts and are in the sequence of Pt-Co/C > Pt-Fe/C > Pt-Ni/C > commercial Pt/C (or PtRu/C). The improved activities and durability can benefit from the morphological and compositional effects. This synthesis approach may be applied to develop bifunctional catalysts with enhanced ORR and MOR properties for future fuel cells designs.

Electronic Supplementary Material

Download File(s)
12274_2020_2666_MOESM1_ESM.pdf (9 MB)

References

[1]
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.
[2]
Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.
[3]
Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397-12429.
[4]
Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266-6291.
[5]
Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553-578.
[6]
Sial, M. A. Z. G.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175-6200.
[7]
Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.
[8]
Wang, P. T.; Shao, Q.; Huang, X. Q. Updating Pt-based electrocatalysts for practical fuel cells. Joule 2018, 2, 2514-2516.
[9]
Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.
[10]
Jiang, L. Y.; Huang, X. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt76Co24 nanomyriapods for efficient electrocatalysis. J. Mater. Chem. A 2017, 5, 10554-10560.
[11]
Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.
[12]
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
[13]
Wu, Z. F.; Dang, D.; Tian, X. L. Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl. Mater. Interfaces 2019, 11, 9117-9124.
[14]
Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678-11681.
[15]
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
[16]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[17]
Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265-3278.
[18]
Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.
[19]
Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204-7212.
[20]
Chaudhari, N. K.; Joo, J.; Kim, B.; Ruqia, B.; Choi, S. I.; Lee, K. Recent advances in electrocatalysts toward the oxygen reduction reaction: The case of PtNi octahedra. Nanoscale 2018, 10, 20073-20088.
[21]
Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
[22]
Luo, M. C.; Sun, Y. J.; Yingjun, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Boosting oxygen reduction catalysis by tuning the dimensionality of Pt-based nanostructures. Acta Phys.—Chim. Sin. 2018, 34, 361-376.
[23]
Zeng, L. M.; Cui, X. Z.; Shi, J. L. A facile strategy for ultrasmall Pt NPs being partially-embedded in N-doped carbon nanosheet structure for efficient electrocatalysis. Sci. China Mater. 2018, 61, 1557-1566.
[24]
Lim, J. H.; Shin, H.; Kim, M. Y.; Lee, H.; Lee, K. S.; Kwon, Y. K.; Song, D. H.; Oh, S. K.; Kim, H.; Cho, E. A. Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 2018, 18, 2450-2458.
[25]
Raciti, D.; Kubal, J.; Ma, C.; Barclay, M.; Gonzalez, M.; Chi, M.; Greeley, J.; More, K. L.; Wang, C. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy 2016, 20, 202-211.
[26]
Wang, Z. X.; Yao, X. Z.; Kang, Y. Q.; Xia, D. S.; Gan, L. Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction. Catalysts 2019, 9, 569.
[27]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[28]
Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543-18547.
[29]
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[30]
Li, C. J.; Huang, B. L.; Luo, M. C.; Qin, Y. N.; Sun, Y. J.; Li, Y. J.; Yang, Y.; Wu, D.; Li, M. G.; Guo, S. J. An efficient ultrathin PtFeNi nanowire/ionic liquid conjugate electrocatalyst. Appl. Catal. B: Environ. 2019, 256, 117828.
[31]
Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152-8159.
[32]
Bai, S. X.; Huang B. L.; Shao Q.; Huang X. Q. Universal strategy for ultrathin Pt-M (M = Fe, Co, Ni) nanowires for efficient catalytic hydrogen generation. ACS Appl. Mater. Interfaces 2018, 10, 22257-22263.
[33]
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.
[34]
Fu, S. F.; Zhu, C. Z.; Song, J. H.; Zhang, P. N.; Engelhard, M. H.; Xia, H. B.; Du, D.; Lin, Y. H. Low Pt-content ternary PdCuPt nanodendrites: An efficient electrocatalyst for oxygen reduction reaction. Nanoscale 2017, 9, 1279-1284.
[35]
Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930-2936.
[36]
Lim, B.; Xia, Y. N. Metal nanocrystals with highly branched morphologies. Angew. Chem., Int. Ed. 2011, 50, 76-85.
[37]
Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896-8943.
[38]
Cao, Y. Q.; Yang, Y.; Shan, Y. F.; Huang, Z. R. One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 5998-6003.
[39]
Luo, M.; Qin Y.; Li, M.; Sun, Y.; Li, C.; Li Y.; Yang Y.; Lv, F.; Wu, D.; Zhou, P. et al. Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Sci. Bull. 2020, 65, 97-104.
[40]
Xia, T. Y.; Liu, J. L.; Wang, S. G.; Chao, W.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2017, 60, 57-67.
[41]
Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.
[42]
Wang, L. J.; Tian, X. L.; Xu, Y. Y.; Zaman, S.; Qi, K.; Liu H.; Xia, B. Y. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation. J. Mater. Chem. A 2019, 7, 13090-13095.
[43]
Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.
[44]
Han, Z.; Wang, A. J.; Zhang, L.; Wang, Z. G.; Fang, K. M.; Yin, Z. Z.; Feng, J. J. 3D highly branched PtCoRh nanoassemblies: Glycine-assisted solvothermal synthesis and superior catalytic activity for alcohol oxidation. J. Colloid Interf. Sci. 2019, 554, 512-519.
[45]
Xu, H.; Song, P. P.; Gao, F.; Shiraishi, Y.; Du, Y. K. Hierarchical branched platinum-copper tripods as highly active and stable catalysts. Nanoscale 2018, 10, 8246-8252.
[46]
Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B: Environ 2019, 258, 117951.
[47]
Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun S. S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778-2782.
[48]
Ye, E. Y.; Regulacio, M. D.; Zhang, S. Y.; Loh, X. J.; Han, M. Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001-6017.
[49]
Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755-19763.
[50]
Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651-657.
[51]
Qin, Y. N.; Luo, M. C.; Sun, Y. J.; Li, C. J.; Huang, B. L.; Yang, Y.; Li, Y. J.; Wang, L.; Guo, S. J. Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis. ACS Catal. 2018, 8, 5581-5590.
[52]
Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 2007, 129, 12624-12625.
[53]
Asset, T.; Chattot, R.; Fontana, M.; Mercier-Guyon, B.; Job, N.; Dubau, L.; Maillard, F. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem 2018, 19, 1552-1567.
[54]
Jiang, L. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation. ChemElectroChem 2017, 4, 2909-2914.
[55]
Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824-832.
[56]
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.
[57]
Lee, Y. W.; Im, M.; Hong, J. W.; Han, S. W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018-44026.
[58]
Zhang, N.; Zhu, Y. M.; Shao, Q.; Zhu, X.; Huang, X. Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. J. Mater. Chem. A 2017, 5, 18977-18983.
[59]
Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323-329.
[60]
Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184-2202.
[61]
Yang, T.; Ma, Y. X.; Huang, Q. Q.; He, M. S.; Cao, G. J.; Sun, X.; Zhang, D. E.; Wang, M. Y.; Zhao, H.; Tong, Z. W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 23646-23654.
Nano Research
Pages 638-645
Cite this article:
Lei W, Li M, He L, et al. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Research, 2020, 13(3): 638-645. https://doi.org/10.1007/s12274-020-2666-3
Topics:

819

Views

76

Crossref

N/A

Web of Science

74

Scopus

9

CSCD

Altmetrics

Received: 08 November 2019
Revised: 23 December 2019
Accepted: 17 January 2020
Published: 07 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return