AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene

Caihong He1Lingli Yu1Na Lu1Wenjing Wang1Wei Chen1( )Shaojie Lu1Yun Yang1Dekun Ma1Shaoming Huang1,2( )
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

Abstract

Heterostructured bimetal nanocrystals with a component having localized surface plasmon resonance (LSPR) property are promising photocatalysts for a series of reactions. In this work, kinetic products of Pd-Ag with a screwdriver-like heterostructure have been successfully fabricated via the selective epitaxial growth of Ag on Pd nanowires (NWs). It was confirmed that the deposition rate (Vdeposition) of Ag is much more sensitive to the temperature, compared to the surface diffusion rate (Vdiffusion) which can be effectively reduced by the binding of poly(vinylpyrrolidone) (PVP) molecules. Then the magnitude of Vdeposition/Vdiffusion has been well tailored for the formation of a kinetic growth environment. The interactions between the components of the as-prepared Pd-Ag heterostructures resulted in intensified LSPR effects. As a result, they gained better photocatalytic performance toward solvent free aerobic oxidation of toluene than Pd NWs, Ag NWs and the mixture of them. Additionally, the Pd-Ag heterostructured nanocrystals exhibited excellent catalytic stability for recycling. This work not only presents an idea for realizing kinetic growth but also supports that LSPR effect is a good tool for improving the photocatalytic activity.

Electronic Supplementary Material

Download File(s)
12274_2020_2667_MOESM1_ESM.pdf (2.5 MB)

References

[1]
Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.
[2]
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454-460.
[3]
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
[4]
Xia, B. Q.; Chen, K.; Luo, W.; Cheng, J. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472-3479.
[5]
Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Marjo, C. E.; Gooding, J. J.; Tilley, R. D. Pd-Ru core-shell nanoparticles with tunable shell thickness for active and stable oxygen evolution performance. Nanoscale 2018, 10, 15173-15177.
[6]
Slanac, D. A.; Hardin, W. G; Johnston, K. P.; Stevenson, K. J. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J. Am. Chem. Soc. 2012, 134, 9812-9819.
[7]
Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du, G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem., Int. Ed. 2016, 55, 9021-9025.
[8]
Bhunia, K.; Chandra, M.; Khilari, S.; Pradhan, D. Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Appl. Mater. Interfaces 2019, 11, 478-488.
[9]
Dai, Y. T.; Li, C.; Shen, Y. B.; Lim, T.; Xu, J.; Li, Y. W.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 2018, 9, 60.
[10]
Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544-2552.
[11]
Bai, F.; Li, B. S.; Bian, K. F.; Haddad, R.; Wu, H. M.; Wang, Z. W.; Fan. H. Y. Pressure-tuned structure and property of optically active nanocrystals. Adv. Mater. 2016, 28, 1989-1993.
[12]
Huang, L. P.; Zhang, W.; Li. P.; Song, Y. B.; Sheng, H. T.; Du, Y. X.; Wang, Y. G.; Wu, Y. E.; Hong, X.; Ding, Y. H. et al. Exposing Cu-rich {110} active facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Res. 2019, 12, 1147-1153.
[13]
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-8162.
[14]
Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387-1392.
[15]
Long, J. L.; Chang, H. J.; Gu, Q.; Xu, J.; Fan, L. Z.; Wang, S. C.; Zhou, Y. G.; Wei, W.; Huang, L.; Wang, X. X. et al. Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ. Sci. 2014, 7, 973-977.
[16]
Nehl, C. L.; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415-2419.
[17]
Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.
[18]
Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619.
[19]
Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W.; Zhu, H. Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272-4285.
[20]
Yin, X.; Liu, X. H.; Pan, Y. T.; Walsh, K. A.; Yang, H. Hanoi tower-like multilayered ultrathin palladium nanosheets. Nano Lett. 2014, 14, 7188-7194.
[21]
Briggs, B. D.; Bedford, N. M.; Seifert, S.; Koerner, H.; Ramezani-Dakhel, H.; Heinz, H.; Naik, R. R.; Frenkel, A. I.; Knecht, M. R. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C-C coupling: Effects of particle surface disorder. Chem Sci. 2015, 6, 6413-6419.
[22]
Pérez-Lorenzo, M. Palladium nanoparticles as efficient catalysts for Suzuki cross-coupling reactions. J. Phys. Chem. Lett. 2012, 3, 167-174.
[23]
Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 130, 3493-3496.
[24]
Fang, P. P.; Jutand, A.; Tian, Z. Q.; Amatore, C. Au-Pd core-shell nanoparticles catalyze Suzuki-Miyaura reactions in water through Pd leaching. Angew. Chem., Int. Ed. 2011, 50, 12184-12188.
[25]
Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem., Int. Ed. 2015, 54, 8271-8274.
[26]
Pacardo, D. B.; Sethi, M.; Jones, S. E.; Naik, R. R.; Knecht, M. R. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction. ACS Nano 2009, 3, 1288-1296.
[27]
Zhang, L. F.; Zhong, S. L.; Xu, A. W. Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement. Angew. Chem., Int. Ed. 2013, 52, 645-649.
[28]
Xiao, Q.; Sarina, S.; Bo, A. X.; Jia, J. F.; Liu, H. W.; Arnold, D. P.; Huang, Y. M.; Wu, H. S.; Zhu, H. Y. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal. 2014, 4, 1725-1734.
[29]
Li, L. S.; Niu, Z. Q.; Cai, S. F.; Zhi, Y.; Li, H.; Rong, H. P.; Liu, L. C.; Liu, L.; He, W.; Li, Y. D. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013, 49, 6843-6845.
[30]
Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.
[31]
Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195-199.
[32]
Gao, J.; Si, Z. C.; Xu, Y. F.; Liu, L. P.; Zhang, Y. Y.; Wu, X. D.; Ran, R.; Weng, D. Pd-Ag@CeO2 catalyst of core-shell structure for low temperature oxidation of toluene under visible light irradiation. J. Phys. Chem. C 2019, 123, 1761-1769.
[33]
Li, Y. F.; Liu, F. F.; Fan, Y.; Cheng, G.; Song, W.; Zhou, J. L. Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. Appl. Surf. Sci. 2018, 462, 207-212.
[34]
Zhao, J. H.; Tang, Z. C.; Dong, F.; Zhang, J. Y. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation. Mol. Catal. 2019, 463, 77-86.
[35]
Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704-710.
[36]
bin Saiman, M. I.; Brett, G. L.; Tiruvalam, R.; Forde, M. M.; Sharples, K.; Thetford, A.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Murphy, D. M. et al. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 5981-5985.
[37]
Enache, D. I.; Barker, D.; Edwards, J. K.; Taylor, S. H.; Knight, D. W.; Carley, A. F.; Hutchings, G. J. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catal. Today 2007, 122, 407-411.
[38]
Dong, H. J.; Xie, R. F.; Yang, L.; Li, F. A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation. Dalton Trans. 2018, 47, 7776-7786.
[39]
Che, A. W.; Hao, M. J.; Yi, W. Z.; Kobayashi, H.; Zhou, Y. H.; Xiao, L. P.; Fan, J. Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles. Chin. J. Catal. 2017, 38, 1870-1879.
[40]
Xia, X. H.; Figueroa-Cosme, L.; Tao, J.; Peng, H. C.; Niu, G. D.; Zhu, Y. M.; Xia, Y. N. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J. Am. Chem. Soc. 2014, 136, 10878-10881.
[41]
Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 2008, 130, 6949-6951.
[42]
Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947-7966.
[43]
Zeng, J.; Zhu, C.; Tao, J.; Jin, M. S.; Zhang, H.; Li, Z. Y.; Zhu, Y. M.; Xia, Y. N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem., Int. Ed. 2012, 51, 2354-2358.
[44]
Lu, N.; Chen, W.; Fang, G. Y.; Chen, B.; Yang, K. Q.; Yang, Y.; Wang, Z. C.; Huang, S. M.; Li, Y. D. 5-fold twinned nanowires and single twinned right bipyramids of Pd: Utilizing small organic molecules to tune the etching degree of O2/halides. Chem. Mater. 2014, 26, 2453-2459.
[45]
Niu, Z. Q.; Cui, F.; Kuttner, E.; Xie, C. L.; Chen, H.; Sun, Y. C.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 2018, 18, 5329-5334.
[46]
Xia, X. H.; Xia, Y. N. Symmetry breaking during seeded growth of nanocrystals. Nano Lett. 2012, 12, 6038-6042.
[47]
Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352-6357.
[48]
Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898-903.
[49]
Huang, X. Q.; Zheng, N. F. One-pot, High-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602-4603.
[50]
Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808-4812.
[51]
Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60-95.
Nano Research
Pages 646-652
Cite this article:
He C, Yu L, Lu N, et al. Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Research, 2020, 13(3): 646-652. https://doi.org/10.1007/s12274-020-2667-2
Topics:

806

Views

15

Crossref

N/A

Web of Science

15

Scopus

4

CSCD

Altmetrics

Received: 28 December 2019
Revised: 11 January 2020
Accepted: 18 January 2020
Published: 20 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return