AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range

Tianjiang Sun1Chang Liu1Jiayue Wang2Qingshun Nian1Yazhi Feng1Yan Zhang3Zhanliang Tao1( )Jun Chen1
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, Binhai Road 72, Qingdao 266237, China
Show Author Information

Graphical Abstract

Abstract

Aqueous rechargeable batteries are a possible strategy for large-scale energy storage systems. However, limited choices of anode materials restrict their further application. Here we report phenazine (PNZ) as stable anode materials in different alkali-ion (Li+, Na+, K+) electrolyte. A novel full cell is assembled by phenazine anode, Na0.44MnO2 cathode and 10 M NaOH electrolyte to further explore the electrochemical performance of phenazine anode. This battery is able to achieve high capacity (176.7 mAh·g-1 at 4 C (1.2 A·g-1)), ultralong cycling life (capacity retention of 80% after 13,000 cycles at 4 C), and excellent rate capacity (92 mAh·g-1 at 100 C (30 A·g-1)). The reaction mechanism of PNZ during charge-discharge process is demonstrated by in situ Raman spectroscopy, in situ Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Furthermore, the system is able to successfully operate at wide temperature range from -20 to 70 °C and achieves remarkable electrochemical performance.

Electronic Supplementary Material

Download File(s)
12274_2020_2674_MOESM1_ESM.pdf (4.5 MB)

References

[1]
Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 2014, 26, 3545-3553.
[2]
Kim, J.; Yoon, G.; Kim, H.; Park, Y. U.; Kang, K. Na3V(PO4)2: A new layered-type cathode material with high water stability and power capability for Na-ion batteries. Chem. Mater. 2018, 30, 3683-3689.
[3]
Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L. M.; Wang, Y. G.; Wang, C. S.; Xia, Y. Y. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703008.
[4]
Pang, G.; Nie, P.; Yuan, C. Z.; Shen, L. F.; Zhang, X. G.; Zhu, J. J.; Ding, B. Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system. Energy Technol. 2014, 2, 705-712.
[5]
Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D. et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources 2007, 174, 16-29.
[6]
Yu, N. F.; Gao, L. J.; Zhao, S. H.; Wang, Z. D. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim. Acta 2009, 54, 3835-3841.
[7]
Zhang, Y.; Wang, Y. H.; Wang, L.; Lo, C. M.; Zhao, Y.; Jiao, Y. D.; Zheng, G. F.; Peng, H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 2016, 4, 9002-9008.
[8]
Nian, Q. S.; Liu, S.; Liu, J.; Zhang, Q.; Shi, J. Q.; Liu, C.; Wang, R.; Tao, Z. L.; Chen, J. All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance. ACS Appl. Energy Mater. 2019, 2, 4370-4378.
[9]
Wang, Y. S.; Feng, Z. M.; Laul, D.; Zhu, W.; Provencher, M.; Trudeau, M. L.; Guerfi, A.; Zaghib, K. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery. J. Power Sources 2018, 374, 211-216.
[10]
Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Na2V6O16·3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018, 18, 2402-2410.
[11]
Hung, T. F.; Lan, W. H.; Yeh, Y. W.; Chang, W. S.; Yang, C. C.; Lin, J. C. Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustainable Chem. Eng. 2016, 4, 7074-7079.
[12]
Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 2019, 3, 1800220.
[13]
Xia, C.; Guo, J.; Li, P.; Zhang, X. X.; Alshareef, H. N. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem., Int. Ed. 2018, 57, 3943-3948.
[14]
Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.
[15]
Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3, 1800272.
[16]
Qiu, S.; Wu, X. Y.; Wang, M. Y.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z. Z.; Xu, W. Q.; Wang, Q.; Gu, M. et al. Nasicon-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 2019, 64, 103941.
[17]
Long, H. W.; Zeng, W.; Wang, H.; Qian, M. M.; Liang, Y. H.; Wang, Z. C. Self-assembled biomolecular 1D nanostructures for aqueous sodium-ion battery. Adv. Sci. 2018, 5, 1700634.
[18]
Wang, Y. Y.; Hou, B. H.; Guo, J. Z.; Ning, Q. L.; Pang, W. L.; Wang, J. W.; Lü, C. L.; Wu, X. L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252.
[19]
Jin, D. N.; Choi, S.; Jang, W.; Soon, A.; Kim, J.; Moon, H.; Lee, W.; Lee, Y.; Son, S.; Park, Y. C. et al. Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl. Mater. Interfaces 2019, 11, 2917-2924.
[20]
Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H. S.; Kaskel, S.; Eckert, J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 2013, 4, 1485.
[21]
Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F. C.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-c radical intermediate. Nat. Commun. 2016, 7, 13318.
[22]
Yuan, C. P.; Wu, Q.; Li, Q.; Duan, Q.; Li, Y. H.; Wang, H. G. Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 8392-8399.
[23]
Hou, M. Y.; Chen, L.; Guo, Z. W.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nat. Commun. 2018, 9, 438.
[24]
Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.; Coskun, A.; Choi, J. W. An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Adv. Energy Mater. 2014, 4, 1400133.
[25]
Deng, W. W.; Shen, Y. F.; Qian, J. F.; Yang, H. X. A polyimide anode with high capacity and superior cyclability for aqueous na-ion batteries. Chem. Commun. 2015, 51, 5097-5099.
[26]
Mohamed, A. I.; Whitacre, J. F. Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability. Electrochim. Acta 2017, 235, 730-739.
[27]
Guo, Z. W.; Ma, Y. Y.; Dong, X. L.; Huang, J. H.; Wang, Y. G.; Xia, Y. Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem., Int. Ed. 2018, 57, 11737-11741.
[28]
Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841-848.
[29]
Liu, C.; Ma, T.; Xia, K. X.; Hou, X. S.; Nian, Q. S.; Cai, Y. C.; Liang, J. High performance polyanthraquinone/Co-Ni(OH)2 aqueous batteries based on hydroxyl and potassium insertion/extraction reactions. Sustainable Energy Fuels 2020, 4, 132-137.
[30]
Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.
[31]
Wu, X. W.; Yuan, X. H.; Yu, J. G.; Liu, J.; Wang, F. X.; Fu, L. J.; Zhou, W. X.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P. A high-capacity dual core-shell structured MWCNTs@S@ppy nanocomposite anode for advanced aqueous rechargeable lithium batteries. Nanoscale 2017, 9, 11004-11011.
[32]
Gu, T. T.; Zhou, M.; Liu, M. Y.; Wang, K. L.; Cheng, S. J.; Jiang, K. A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv. 2016, 6, 53319-53323.
[33]
Feng, Y. Z.; Zhang, Q.; Liu, S.; Liu, J.; Tao, Z. L.; Chen, J. A novel aqueous sodium-manganese battery system for energy storage. J. Mater. Chem. A 2019, 7, 8122-8128.
[34]
Wang, Y. S.; Mu, L. Q.; Liu, J.; Yang, Z. Z.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1501005.
[35]
Liu, Q. N.; Hu, Z.; Chen, M. Z.; Gu, Q. F.; Dou, Y. H.; Sun, Z. Q.; Chou, S. L.; Dou, S. X. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644-3652.
[36]
Chen, Z. X.; Yuan, T. C.; Pu, X. J.; Yang, H. X.; Ai, X. P.; Xia, Y. Y.; Cao, Y. L. Symmetric sodium-ion capacitor based on Na0.44MnO2 nanorods for low-cost and high-performance energy storage. ACS Appl. Mater. Interfaces 2018, 10, 11689-11698.
[37]
Liu, C.; Li, J. G.; Zhao, P. X.; Guo, W. L.; Yang, X. P. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties. J. Nanopar. Res. 2015, 17, 142.
[38]
Brisbane, P. G.; Janik, L. J.; Tate, M. E.; Warren, R. F. Revised structure for the phenazine antibiotic from pseudomonas fluorescens 2-79 (NRRL B-15132). Antimicrob. Agent Chemother. 1987, 31, 1967-1971.
[39]
Kellenberger, A.; Dmitrieva, E.; Dunsch, L. The stabilization of charged states at phenazine-like units in polyaniline under p-doping: An in situ ATR-FTIR spectroelectrochemical study. Phys. Chem. Chem. Phys. 2011, 13, 3411-3420.
[40]
Li, W. H.; Li, X. Y.; Yu, N. T. Surface-enhanced hyper-Raman scattering and surface-enhanced Raman scattering studies of electroreduction of phenazine on silver electrode. Chem. Phy. Lett. 2000, 327, 153-161.
[41]
Trchová, M.; Morávková, Z.; Dybal, J.; Stejskal, J. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering. ACS Appl. Mater. Interfaces 2014, 6, 942-950.
[42]
Zhao, L. W.; Ni, J. F.; Wang, H. B.; Gao, L. J. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv. 2013, 3, 6650-6655.
[43]
Tian, B. B.; Ding, Z. J.; Ning, G. H.; Tang, W.; Peng, C. X.; Liu, B.; Su, J.; Su, C. L.; Loh, K. P. Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chem. Commun. 2017, 53, 2914-2917.
[44]
Wan, F.; Zhang, L. L.; Wang, X. Y.; Bi, S. H.; Niu, Z. Q.; Chen, J. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 2018, 28, 1804975.
[45]
Kim, B. G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater. 2013, 23, 439-445.
[46]
Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li, F. J. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022.
[47]
Shin, Y.; Manthiram, A. High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium-ion batteries. Electrochem. Solid State Lett. 2003, 6, A34-A36.
[48]
Lee, J. H.; Hong, J. K.; Jang, D. H.; Sun, Y. K.; Oh, S. M. Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M = Li, B, Al, Co, and Ni) for Li secondary batteries. J. Power Sources 2000, 89, 7-14.
[49]
Takashima, T.; Hashimoto, K.; Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 2012, 134, 1519-1527.
[50]
Dall’Asta, V.; Buchholz, D.; Chagas, L. G.; Dou, X. W.; Ferrara, C.; Quartarone, E.; Tealdi, C.; Passerini, S. Aqueous processing of Na0.44MnO2 cathode material for the development of greener Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 34891-34899.
Nano Research
Pages 676-683
Cite this article:
Sun T, Liu C, Wang J, et al. A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Research, 2020, 13(3): 676-683. https://doi.org/10.1007/s12274-020-2674-3
Topics:

823

Views

59

Crossref

N/A

Web of Science

57

Scopus

3

CSCD

Altmetrics

Received: 10 November 2019
Revised: 24 December 2019
Accepted: 23 January 2020
Published: 12 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return