AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability

Jing Wei1,2Xi Wang2Xiangyu Sun2Zhaofeng Yang1Iwan Moreels3Kun Xu2Hongbo Li1( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Information Photonics and Optical Communications School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Department of Chemistry, Ghent University, 9000 Gent, Belgium
Show Author Information

Graphical Abstract

Abstract

Inorganic halide perovskites such as cesium lead iodide (CsPbI3) have drawn tremendous attention, as their tunable band gaps are desirable for solar cells as well as light emitting diodes. However, due to their low Goldschmidt tolerance factor, the cubic phase of bulk CsPbX3—the variant with desirable band gap—is not stable in ambient, especially in humid air. Besides, the low solubility of CsX in precursor makes it difficult to control the film thickness and morphology of CsPbX3, which becomes another obstacle for the practical application of inorganic perovskite. Here, we report a polymer assisted deposition of high-quality CsPbI2Br film by spin-coating a polymer-blended CsPbI2Br precursor. The long-chained polymer increases the viscosity of the solution, which enables us to achieve a ca. 700-nm thick film with a low solution concentration of CsPbI2Br. Moreover, the polymer network helps to regulate the crystallization process and provides more crystallization sites for perovskite film, reducing grain size and thus improving the film coverage. Perovskite solar cells with the polymer network exhibit improved efficiency and reproducibility (0.72% standard deviation). Moreover, the device demonstrates excellent robustness against moisture and oxygen, and maintains 90% of its initial power conversion efficiency (PCEs) after aging 4 months in ambient conditions. The conception of polymer incorporation into inorganic perovskite films paves a way to further increase the performance, stability and reproducibility of inorganic perovskite devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2675_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Ummadisingu, A.; Steier, L.; Seo, J. Y.; Matsui, T.; Abate, A.; Tress, W.; Grätzel, M. The effect of illumination on the formation of metal halide perovskite films. Nature 2017, 545, 208-212.
[2]
Saliba, M. Perovskite solar cells must come of age. Science 2018, 359, 388-389.
[3]
The National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jan 20, 2020).
[4]
Oxford PV™-The perovskite company. Oxford PV perovskite solar cell achieves 28% efficiency 2018. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jan 20, 2020).
[5]
Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.
[6]
Xie, Y. M.; Ma, C. Q.; Xu, X. W.; Li, M. L.; Ma, Y. H.; Wang, J.; Chandran, H. T.; Lee, C. S.; Tsang, S. W. Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 2019, 12, 1033-1039.
[7]
Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T. Y.; Kan, M.; Li, Y. W.; Zhang, L. J.; Wang, X. T.; Yang, Y. G.; Gao, X. Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 2019, 365, 591-595.
[8]
Li, Y.; Wang, X. Y.; Xue, W. N.; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785-789.
[9]
Chen, W. J.; Chen, H. Y.; Xu, G. Y.; Xue, R. M.; Wang, S. H.; Li, Y. W.; Li, Y. F. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 2019, 3, 191-204.
[10]
Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584-1594.
[11]
Zeng, Q. S.; Zhang, X. Y.; Liu, C. M.; Feng, T. L.; Chen, Z. L.; Zhang, W.; Zheng, W. T.; Zhang, H.; Yang, B. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL 2019, 3, 1800239.
[12]
Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261-267.
[13]
Zhang, J. R.; Bai, D. L.; Jin, Z. W.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. Z. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv. Energy Mater. 2018, 8, 1703246.
[14]
Tian, J. J.; Xue, Q. F.; Tang, X. F.; Chen, Y. X.; Li, N.; Hu, Z. C.; Shi, T. T.; Wang, X.; Huang, F.; Brabec, C. J. et al. Dual interfacial design for efficient cspbi2br perovskite solar cells with improved photostability. Adv. Mater. 2019, 31, 1901152.
[15]
Tai, Q. D.; Tang, K. C.; Yan, F. Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 2019, 12, 2375-2405.
[16]
Sahli, F.; Werner, J.; Kamino, B. A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Diaz Leon, J. J.; Sacchetto, D. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820-826.
[17]
Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W.; Luo, J. S.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J. T.; Dietler, G. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205-214.
[18]
Jiang, Y. Z.; Yuan, J.; Ni, Y. X.; Yang, J. E.; Wang, Y.; Jiu, T. G.; Yuan, M. J.; Chen, J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2018. 2, 1356-1368.
[19]
Chen, C. Y.; Lin, H. Y.; Chiang, K. M.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv. Mater. 2017, 29, 1605290.
[20]
Bian, H.; Bai, D. L.; Jin, Z. W.; Wang, K.; Liang, L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. Graded bandgap CsPbI2+xBr1-x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2018, 2, 1500-1510.
[21]
Li, N.; Zhu, Z. L.; Li, J. W.; Jen, A. K. Y.; Wang, L. D. Inorganic CsPb1-xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800525.
[22]
Zhou, W. K.; Zhao, Y. C.; Zhou, X.; Fu, R.; Li, Q.; Zhao, Y.; Liu, K. H.; Yu, D. P.; Zhao, Q. Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J. Phys. Chem. Lett. 2017, 8, 4122-4128.
[23]
Lu, C.; Li, H.; Kolodziejski, K.; Dun, C. C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762-768.
[24]
Ye, S.; Zhao, M. J.; Song, J.; Qu, J. L. Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane. Nano Res. 2018, 11, 4654-4663.
[25]
Dong, L. M.; Chen, Z.; Ye, L.; Yu, Y.; Zhang, J. B.; Liu, H.; Zang, J. F. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 2019, 12, 1733-1738.
[26]
Wei, J.; Li, H.; Zhao, Y. C.; Zhou, W. K.; Fu, R.; Leprince-Wang, Y.; Yu, D. P.; Zhao, Q. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 2016, 26, 139-147.
[27]
Zeng, Q. S.; Zhang, X. Y.; Feng, X. L.; Lu, S. Y.; Chen, Z. L.; Yong, X.; Redfern, S. A. T.; Wei, H. T.; Wang, H. Y.; Shen, H. Z. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 2018, 30, 1705393.
[28]
Tian, J. J.; Xue, Q. F.; Tang, X. F.; Chen, Y. X.; Li, N.; Hu, Z. C.; Shi, T. T.; Wang, X.; Huang, F.; Brabec, C. J. et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 2019, 31, 1901152.
[29]
Miller-Chou, B. A.; Koenig, J. L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223-1270.
[30]
Yan, L.; Xue, Q. F.; Liu, M. Y.; Zhu, Z. L.; Tian, J. J.; Li, Z. C.; Chen, Z.; Chen, Z. M.; Yan, H.; Yip, H. L. et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater. 2018, 30, 1802509.
[31]
Yin, G. N.; Zhao, H.; Jiang, H.; Yuan, S. H.; Niu, T. Q.; Zhao, K.; Liu, Z. K.; Liu, S. Z. Precursor engineering for all-inorganic CsPbi2BR perovskite solar cells with 14.78% efficiency. Adv. Funct. Mater. 2018, 28, 1803269.
[32]
Tian, J. J.; Xue, Q. F.; Tang, X. F.; Chen, Y. X.; Li, N.; Hu, Z. C.; Shi, T. T.; Wang, X.; Huang, F.; Brabe, C. C. J. et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 2019, 31, 1901152.
[33]
Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825-3828.
[34]
Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.
[35]
Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829-15832.
[36]
Shao, Z. P.; Wang, Z. W.; Li, Z. P.; Fan, Y. P.; Meng, H. G.; Liu, R. R.; Wang, Y.; Hagfeldt, A.; Cui, G. L.; Pang, S. P. A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells. Angew. Chem., Int. Ed. 2019, 58, 5587-5591.
[37]
Jia, C.; Li, H.; Meng, X. W.; Li, H. B. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem. Commun. 2018, 54, 6300-6303.
[38]
Almeida, G.; Infante, I.; Manna, L. Resurfacing halide perovskite nanocrystals. Science 2019, 364, 833-834.
[39]
Wei, J.; Guo, F. W.; Wang, X.; Xu, K.; Lei, M.; Liang, Y. Q.; Zhao, Y. C.; Xu, D. S. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater. 2018, 30, 1805153.
[40]
Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722-726.
[41]
Wei, J.; Guo, F. W.; Liu, B.; Sun, X. Y.; Wang, X.; Yang, Z. J.; Xu, K.; Lei, M.; Zhao, Y. C.; Xu, D. S. UV-inert ZnTiO3 electron selective layer for photostable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901620.
[42]
Guo, F. W.; Sun, X. Y.; Liu, B.; Yang, Z. J.; Wei, J.; Xu, D. S. Enhanced lifetime and photostability with low-temperature mesoporous ZnTiO3/ compact SnO2 electrodes in perovskite solar cells. Angew. Chem., Int. Ed. 2019, 58, 18460-18465.
Nano Research
Pages 684-690
Cite this article:
Wei J, Wang X, Sun X, et al. Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Research, 2020, 13(3): 684-690. https://doi.org/10.1007/s12274-020-2675-2
Topics:

874

Views

32

Crossref

N/A

Web of Science

34

Scopus

6

CSCD

Altmetrics

Received: 12 November 2019
Revised: 02 January 2020
Accepted: 19 January 2020
Published: 12 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return