AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Edge induced band bending in van der Waals heterojunctions: A first principle study

Yang Ou1,§Zhuo Kang1,2,§Qingliang Liao1,2Zheng Zhang1,2( )Yue Zhang1,2( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Yang Ou and Zhuo Kang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The dangling bond free nature of two-dimensional (2D) material surface/interface makes van der Waals (vdW) heterostructure attractive for novel electronic and optoelectronic applications. But in practice, edge is unavoidable and could cause band bending at 2D material edge analog to surface/interface band bending in conventional three-dimensional (3D) materials. Here, we report a first principle simulation on edge band bending of free standing MoS2/WS2 vdW heterojunction. Due to the imbalance charges at edge, S terminated edge causes upward band bending while Mo/W terminated induces downward bending in undoped case. The edge band bending is comparable to band gap and could obviously harm electronic and optoelectronic properties. We also investigate the edge band bending of electrostatic doped heterojunction. N doping raises the edge band whereas p doping causes a decline of edge band. Heavy n doping even reverses the downward edge band bending at Mo/W terminated edge. In contrast, heavy p doping doesn’t invert the upward bending to downward. Comparing with former experiments, the expected band gap narrowing introduced by interlayer potential gradient at edge is not observed in our free-standing structures and suggests substrate’s important role in this imbalance charge induced phenomenon.

References

[1]
Ferrari, A. C.; Bonaccorso, F.; Fal'Ko, V.; Novoselov, K. S.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598-4810.
[2]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
[3]
Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
[4]
Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater. 2012, 24, 5088-5093.
[5]
Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517-521.
[6]
Wang, X. T.; Li, Y. W.; Pang, Y. X.; Sun, Y. H.; Zhao, X. G.; Wang, J. R.; Zhang, L. J. Rational design of new phases of tin monosulfide by first-principles structure searches. Sci. China Phys., Mech. Astron. 2018, 61, 107311.
[7]
Sun, Y. H.; Luo, S. L.; Zhao, X. G.; Biswas, K.; Li, S. L.; Zhang, L. J. InSe: A two-dimensional material with strong interlayer coupling. Nanoscale 2018, 10, 7991-7998.
[8]
Akbari, E.; Jahanbin, K.; Afroozeh, A.; Yupapin, P.; Buntat, Z. Brief review of monolayer molybdenum disulfide application in gas sensor. Phys. B: Condens. Matter 2018, 545, 510-518.
[9]
Premasiri, K.; Gao, X. P. A. Tuning spin-orbit coupling in 2D materials for spintronics: A topical review. J. Phys.: Condens. Matter 2019, 31, 193001.
[10]
Jha, P. K.; Shitrit, N.; Ren, X. X.; Wang, Y.; Zhang, X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys. Rev. Lett. 2018, 121, 116102.
[11]
Zhang, X. K.; Peng, N.; Liu, T. T.; Zheng, R. T.; Xia, M. T.; Yu, H. X.; Chen, S.; Shui, M.; Shu, J.. Review on niobium-based chalcogenides for electrochemical energy storage devices: Application and progress. Nano Energy 2019, 65, 104049.
[12]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[13]
Sun, Y. H.; Wang, X. J.; Zhao, X. G.; Shi, Z. M.; Zhang, L. J. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond. 2018, 39, 072001.
[14]
Shi, Z. M.; Wang, X. J.; Sun, Y. H.; Li, Y. W.; Zhang, L. J. Interlayer coupling in two-dimensional semiconductor materials. Semicond. Sci. Technol. 2018, 33, 093001.
[15]
Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[16]
Yan, R. H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices 1992, 39, 1704-1710.
[17]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[18]
Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
[19]
Pradhan, N. R.; Rhodes, D.; Xin, Y.; Memaran, S.; Bhaskaran, L.; Siddiq, M.; Hill, S.; Ajayan, P. M.; Balicas, L. Ambipolar molybdenum diselenide field-effect transistors: Field-effect and hall mobilities. ACS Nano 2014, 8, 7923-7929.
[20]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[21]
Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717-727.
[22]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[23]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[24]
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[25]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[26]
Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664-3670.
[27]
Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[28]
Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785-4791.
[29]
Flöry, N.; Jain, A.; Bharadwaj, P.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 2015, 107, 123106.
[30]
Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952-958.
[31]
Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852-3858.
[32]
Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.
[33]
Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.
[34]
Li, H. N.; Huang, J. K.; Shi, Y. M.; Li, L. J. Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv. Mater. Interfaces 2019, 6, 1900220.
[35]
Bana, H.; Travaglia, E.; Bignardi, L.; Lacovig, P.; Sanders, C. E.; Dendzik, M.; Michiardi, M.; Bianchi, M.; Lizzit, D.; Presel, F. et al. Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater. 2018, 5, 035012.
[36]
Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.
[37]
Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 2013, 13, 4212-4216.
[38]
Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454-1461.
[39]
Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.
[40]
Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Ou, Y.; Du, J. L.; Xiao, J. K.; Gao, L.; Shan, H. Y.; Luo, Y. et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280-3291.
[41]
Nouchi, R. Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes. J. Appl. Phys. 2016, 120, 064503.
[42]
Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443-2447.
[43]
Zhang, C. D.; Chen, Y. X.; Huang, J. K.; Wu, X. X.; Li, L. J.; Yao, W.; Tersoff, J.; Shih, C. K. Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 2016, 7, 10349.
[44]
Shin, E. H.; Kim, H.; Kim, Y. S. In-plane band bending in hexagonal monolayer WS2 by edge polarization. Phys. Rev. B 2019, 99, 205427.
[45]
Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067-16080.
[46]
Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.
[47]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[48]
Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993-2006.
[49]
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745-2779.
[50]
Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 2013, 88, 085318.
[51]
Zhang, C. X.; Gong, C.; Nie, Y. F.; Min, K. A.; Liang, C. P.; Oh, Y. J.; Zhang, H. J.; Wang, W. H.; Hong, S.; Colombo, L. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 2016, 4, 015026.
Nano Research
Pages 701-708
Cite this article:
Ou Y, Kang Z, Liao Q, et al. Edge induced band bending in van der Waals heterojunctions: A first principle study. Nano Research, 2020, 13(3): 701-708. https://doi.org/10.1007/s12274-020-2679-y
Topics:

800

Views

13

Crossref

N/A

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 19 November 2019
Revised: 07 January 2020
Accepted: 19 January 2020
Published: 20 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return