AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics

Yanxia Meng1,4Kunfeng Zhao2,3,4( )Zhaokun Zhang1,4Peng Gao5( )Jing Yuan3Ting Cai3Qin Tong3Gang Huang4Dannong He2,4( )
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai 200241, China
Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
Ningbo Fundenergy Co., Ltd., 699 Haicheng Road, Ningbo 315200, China
Show Author Information

Graphical Abstract

Abstract

The crystal structures would directly affect the physical and chemical properties of the surface of the material, and would thus influence the catalytic activity of the material. α-MnO2, β-MnO2 and γ-MnO2 nanorods with the same morphology yet different crystal structures were prepared and tested as oxidase mimics using 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate. β-MnO2 that exhibited the highest activity had a catalytic constant of 83.75 μmol·m-2·s-1, 2.7 and 19.0 times of those of α-MnO2 and γ-MnO2 (30.91 and 4.41 μmol·m-2·s-1), respectively. The characterization results showed that there were more surface hydroxyls as well as more Mn4+ on the surface of the β-MnO2 nanorods. The surface hydroxyls were conducive to the oxidation reaction, while Mn4+ was conducive to the regeneration of surface hydroxyls. The synergistic effect of the two factors significantly improved the activity of β-MnO2 oxidase mimic. Using β-MnO2, a β-MnO2-TMB-GSH system was established to detect the content of glutathione (GSH) rapidly and sensitively by colorimetry. This method had a wide detection range (0.11-45 μM) and a low detection limit (0.1 μM), and had been successfully applied to GSH quantification in human serum samples.

Electronic Supplementary Material

Download File(s)
12274_2020_2680_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Hu, X.; Liu X. D.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M. MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sens. Actuators B: Chem. 2019, 286, 476-482.
[2]
Zhu, X. L.; Mao, X. X.; Wang, Z. H.; Feng, C.; Chen, G. F.; Li, G. X. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 2017, 10, 959-970.
[3]
Shoja, Y.; Rafati, A. A.; Ghodsi, J. Polythiophene supported MnO2 nanoparticles as nano-stabilizer for simultaneously electrostatically immobilization of D-amino acid oxidase and hemoglobin as efficient bio-nanocomposite in fabrication of dopamine bi-enzyme biosensor. Mater. Sci. Eng.: C. 2017, 76, 637-645.
[4]
Lai, W. Q.; Zeng, Q.; Tang, J.; Zhang, M. S.; Tang, D. P. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst. Microchimica Acta 2018, 185, 92.
[5]
Amjadi, M.; Hallaj, T.; Kouhi, Z. An enzyme-free fluorescent probe based on carbon dots-MnO2 nanosheets for determination of uric acid. J. Photochem. Photobiol. A: Chem. 2018, 356, 603-609.
[6]
McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. O. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509-516.
[7]
Lu, S. C. Regulation of glutathione synthesis. Mol. Aspects Med. 2009, 30, 42-59.
[8]
Franco, R.; Cidlowski, J. A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ. 2009, 16, 1303-1314.
[9]
Michelet, F.; Gueguen, R.; Leroy, P.; Wellman. M.; Nicolas, A.; Siest, G. Blood and plasma glutathione measured in healthy subjects by HPLC: Relation to sex, aging, biological variables, and life habits. Clin. Chem. 1995, 41, 1509-1517.
[10]
Zhang, D.; Yang, Z. H.; Li, H. J.; Pei, Z. C.; Sun, S. G.; Xu, Y. Q. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione. Chem. Commun. 2016, 52, 749-752.
[11]
Townsend, D. W.; Tew, K. D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145-155.
[12]
Estrela, J. M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143-181.
[13]
Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168-20171.
[14]
Yang, Q. S.; Li, L.; Zhao, F.; Wang, Y. W.; Ye, Z. S.; Guo, X. H. Generation of MnO2 nanozyme in spherical polyelectrolyte brush for colorimetric detection of glutathione. Mater. Lett. 2019, 248, 89-92.
[15]
Shamsipur, M.; Safavi, A.; Mohammadpour, Z. Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sens. Actuators B: Chem. 2014, 199, 463-469.
[16]
Fu, Y.; Zhang H. X.; Dai, S. D.; Zhi, X.; Zhang, J. L.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst 2015, 140, 6676-6683.
[17]
Han, K. N.; Choi, J. S.; Kwon, J. Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep.. 2017, 7, 2806.
[18]
Jiang, T.; Song, Y.; Du, D.; Liu, X. T.; Lin, Y. H. Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis. ACS Sens. 2016, 1, 717-724.
[19]
Xie, J. X.; Zhang, X. D.; Wang, H.; Zheng, H. Z.; Huang, Y. M.; Xie, J. X. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC, Trends Anal. Chem. 2012, 39, 114-129.
[20]
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[21]
Liu, X.; Wang, Q.; Zhao, H. H.; Zhang, L. C.; Sun, Y. Y.; Lv, Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 2012, 137, 4552-4558.
[22]
Liu, J.; Meng, L. J.; Fei, Z. F.; Dyson, P. J.; Jing, X. N.; Liu, X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron. 2017, 90, 69-74.
[23]
Zhang, X. D.; Mao, X. X.; Li, S. Q.; Dong, W. F.; Huang, Y. M. Tuning the oxidase mimics activity of manganese oxides via control of their growth conditions for highly sensitive detection of glutathione. Sens. Actuators B: Chem. 2018, 258, 80-87.
[24]
Xie, J. X.; Zhang, X. D.; Jiang, H.; Wang, S.; Liu, H.; Huang, Y. M. V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media. RSC Adv. 2014, 4, 26046-26049.
[25]
Liu, S. H.; Lu, F.; Xing, R. M.; Zhu, J. J. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem.—Eur. J. 2011, 17, 620-625.
[26]
Wan, Y.; Qi, P.; Zhang, D.; Wu, J. J.; Wang, Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2012, 33, 69-74.
[27]
Wang, R. H.; Li, J. H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ. Sci. Technol. 2010, 44, 4282-4287.
[28]
Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2008, 112, 5307-5315.
[29]
Schwegmann, H.; Feitz, A. J.; Frimmel, F, H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci. 2010, 347, 43-48.
[30]
Kätzel, U.; Vorbau, M.; Stintz, M.; Gottschalk-Gaudig, T.; Barthel, H. Dynamic light scattering for the characterization of polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact. 2008, 25, 19-30.
[31]
Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 1998, 175, 152-160.
[32]
Venkataswamy, P.; Jampaiah, D.; Mukherjee, D.; Aniz, C. U.; Reddy, B. M. Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal. Lett. 2016, 146, 2105-2118.
[33]
Yao, X. J.; Yu, Q.; Ji, Z. Y.; Lv, Y. Y.; Cao, Y.; Tang, C. J.; Gao, F.; Dong, L.; Chen, Y. A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M = Zr4+, Sn4+, Ti4+) catalysts for NO + CO reaction. Appl. Catal. B: Environ. 2013, 130-131, 293-304.
[34]
Reddy, B. M.; Bharali, P.; Saikia, P.; Park, S. E.; Van Den Berg, M. W. E.; Muhler, M.; Grünert, W. Structural characterization and catalytic activity of nanosized CexM1-xO2 (M = Zr and Hf) mixed oxides. J. Phys. Chem. C 2008, 112, 11729-11737.
[35]
Zhang, D. S.; Zhang, L.; Shi, L. Y.; Fang, C.; Li, H. R.; Gao, R. H.; Huang, L.; Zhang, J. P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 2013, 5, 1127-1136.
[36]
Jian, Y. F.; Ma, M. D.; Chen, C. W.; Liu, C.; Yu, Y. K.; Hao, Z. P.; He, C. Tuning the micromorphology and exposed facets of MnOx promotes methyl ethyl ketone low-temperature abatement: Boosting oxygen activation and electron transmission. Catal. Sci. Technol. 2018, 8, 3863-3875.
[37]
Tang, W. X.; Wu, X. F.; Li, D. Y.; Wang, Z.; Liu, G.; Liu, H. D.; Chen, Y. F. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: Effect of calcination temperature and preparation method. J. Mater. Chem. A 2014, 2, 2544-2554.
[38]
Bhide, V. G.; Dani, R. H. Electrical conductivity in oxides of manganese and related compounds. Physica 1961, 27, 821-826.
[39]
Kahil, H. Introduction to the dynamic theory of the (H+, e-) couple insertion in γ-MnO2. J. Solid State Electrochem. 2000, 4, 107-120.
[40]
Li, S. Q.; Wang, L. T.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. A Co,N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sens. Actuators B: Chem. 2018, 264, 312-319.
[41]
Zhang, J.; Zhang, J. H.; Zhang, C. B.; He, H. Complete catalytic oxidation of ethanol over MnO2 with different crystal phase structures. Acta Phys. Chim. Sin. 2015, 31, 353-359.
[42]
Zhang, X. L.; Ye, J. H.; Yuan, J.; Cai, T.; Xiao, B.; Liu, Z.; Zhao, K. F.; Yang, L.; He, D. N. Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation. Appl. Catal. A: Gen. 2018, 566, 104-112.
[43]
Cai, S. X.; Zhang, D. S.; Zhang, L.; Li, H. R.; Gao, R. H.; Shi, L. Y.; Zhang, J. P. Comparative study of 3D ordered macroporous Ce0.75Zr0.2M0.05O2-δ (M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2014, 4, 93-101.
[44]
Yang, J.; Liu, X. L.; Cao, H. B.; Shi, Y. C.; Xie, Y. B.; Xiao, J. D. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Front. Chem. Sci. Eng. 2019, 13, 185-191.
[45]
Barber, J. Photosynthetic water splitting by the Mn4Ca2+Ox catalyst of photosystem II: Its structure, robustness and mechanism. Quart. Rev. Biophys. 2017, 50, e13.
[46]
Siegbahn, P. E. M. Quantum chemical studies of manganese centers in biology. Curr. Opin. Chem. Biol. 2002, 6, 227-235.
[47]
Liu, X.; Wang, Q.; Zhang, Y.; Zhang, L. C.; Su, Y. Y.; Lv, Y. Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New J. Chem. 2013, 37, 2174-2178.
[48]
Ma, Y. H.; Zhang, Z. Y.; Ren, C. L.; Liu, G. Y.; Chen, X. G. A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 2012, 137, 485-489.
[49]
Feng, J. Y.; Huang, P. C.; Shi, S. Z.; Deng, K. Y.; Wu, F. Y. Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: A promising powerful tool for identifying cancer cells. Anal. Chim. Acta 2017, 967, 64-69.
[50]
Ju, J.; Zhang, R. Z.; Chen, W. Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione. Sens. Actuators B: Chem. 2016, 228, 66-73.
[51]
Liu, J.; Meng, L. J.; Fei, Z. F.; Dyson, P. J.; Zhang, L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 2018, 121, 159-165.
[52]
Di, W. H; Zhang, X.; Qin, W. P. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method. Appl. Surf. Sci. 2017, 400, 200-205.
[53]
Chen, X.; Wang, Y. R.; Chai, R.; Xu, Y.; Li, H. R.; Liu, B. Y. Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 13554-13563.
[54]
Zhai, Q. F.; Xing, H. H.; Fan, D. Q.; Zhang, X. W.; Li, J.; Wang, E. K. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione. Sens. Actuators B: Chem. 2018, 273, 1827-1832.
[55]
Yan, X.; Song, Y.; Zhu, C. Z.; Song, J. H.; Du, D.; Su, X. G.; Lin, Y. H. Graphene quantum dot-MnO2 nanosheet based optical sensing platform: A sensitive fluorescence “turn off-on” nanosensor for glutathione detection and intracellular imaging. ACS Appl. Mater. Interfaces 2016, 8, 21990-21996.
[56]
Gao, W. Y.; Liu, Z. Y.; Qi, L. M.; Lai, J. P.; Kitte, S. A.; Xu, G. B. Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal. Chem. 2016, 88, 7654-7659.
[57]
Zhang, H. Z.; Zhang, L.; Ding, Y.; Zhang, W. Q.; Zhang, X.; Shen, Y. H.; Yang, F. C. Determination of glutathione based on NiPd nanoparticles mediated with acetaminophen. Anal. Methods 2016, 8, 3000-3005.
[58]
Valero-Ruiz, E.; González-Sánchez, M. I.; Batchelor-McAuley, C.; Compton, R. G. Halogen mediated voltammetric oxidation of biological thiols and disulfides. Analyst 2016, 141, 144-149.
[59]
Hassanvand, Z.; Jalali, F. Electrocatalytic determination of glutathione using transition metal hexacyanoferrates (MHCFs) of copper and cobalt electrode posited on graphene oxide nanosheets. Anal. Bioanal. Chem. Res. 2018, 5, 115-129.
Nano Research
Pages 709-718
Cite this article:
Meng Y, Zhao K, Zhang Z, et al. Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics. Nano Research, 2020, 13(3): 709-718. https://doi.org/10.1007/s12274-020-2680-5
Topics:

878

Views

39

Crossref

N/A

Web of Science

38

Scopus

3

CSCD

Altmetrics

Received: 21 November 2019
Revised: 18 January 2020
Accepted: 22 January 2020
Published: 22 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return