AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering

Olurotimi A. Bolonduro1,§Breanna M. Duffy1,§Akshita A. Rao1Lauren D. Black1,2Brian P. Timko1( )
Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
Department of Cell, Molecular & Developmental Biology, School of Graduate Biomedical Sciences, Tufts University, Massachusetts 02111, USA

§Olurotimi A. Bolonduro and Breanna M. Duffy contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Effective strategies in cardiac tissue engineering require matrices that recapitulate the mechanical, topographic and electrical cues present in the native extracellular matrix. In this review, we discuss recent efforts in materials science and nanotechnology to achieve functional three-dimensional (3D) scaffolds that modulate and monitor cardiac tissue function. We consider key design considerations, including choice of biopolymer matrix, cell sources, and delivery methods for eventual therapies. We then discuss how solid-state nanomaterials may be integrated within these systems to provide unique electrical and nanotopographic cues that improve electromechanical synchrony. We describe how these approaches may be extended to complex, spatially heterogeneous constructs using 3D bioprinting techniques. Finally, we describe how scaffold materials may be augmented with bioelectronic components to achieve hybrid myocardium that monitors or controls electrophysiological activity. Collectively, these approaches provide a framework for achieving cardiac tissues with tunable, rationally-designed functionalities. We discuss future prospects and remaining challenges for clinical translation.

References

[1]
Benjamin, E. J.; Muntner, P.; Alonso, A.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Das, S. R. et al. Heart disease and stroke statistics-2019 update: A report from the American heart association. Circulation 2019, 139, e56-e528.
[2]
World Health Organisation. Noncommunicable Diseases Country Profiles 2018; World Health Organization: Geneva, 2018.
[3]
Kim, I. C.; Youn, J. C.; Kobashigawa, J. A. The past, present and future of heart transplantation. Korean Circ. J. 2018, 48, 565-590.
[4]
Gray, G. A.; Toor, I. S.; Castellan, R. F. P.; Crisan, M.; Meloni, M. Resident cells of the myocardium: More than spectators in cardiac injury, repair and regeneration. Curr. Opin. Physiol. 2018, 1, 46-51.
[5]
Laflamme, M. A.; Murry, C. E. Heart regeneration. Nature 2011, 473, 326-335.
[6]
Mollova, M.; Bersell, K.; Walsh, S.; Savla, J.; Das, L. T.; Park, S. Y.; Silberstein, L. E.; dos Remedios, C. G.; Graham, D.; Colan, S. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 2013, 110, 1446-1451.
[7]
Liu, Y. W.; Chen, B.; Yang, X. L.; Fugate, J. A.; Kalucki, F. A.; Futakuchi-Tsuchida, A.; Couture, L.; Vogel, K. W.; Astley, C. A.; Baldessari, A. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 2018, 36, 597-605.
[8]
Bergmann, O.; Bhardwaj, R. D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B. A.; Druid, H. et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98-102.
[9]
Zhang, W. L.; Lavine, K. J.; Epelman, S.; Evans, S. A.; Weinheimer, C. J.; Barger, P. M.; Mann, D. L. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart. Assoc. 2015, 4, e001993.
[10]
Wehrens, X. H. T.; Doevendans, P. A. Cardiac rupture complicating myocardial infarction. Int. J. Cardiol. 2004, 95, 285-292.
[11]
Richardson, W. J.; Clarke, S. A.; Quinn, T. A.; Holmes, J. W. Physiological implications of myocardial scar structure. Compr. Physiol. 2011, 5, 1877-1909.
[12]
Kerkhof, P. L. M. Characterizing heart failure in the ventricular volume domain. Clin. Med. Insights: Cardiol. 2015, 9, 11-33.
[13]
Liao, S. Y.; Siu, C. W.; Liu, Y.; Zhang, Y. L.; Chan, W. S.; Wu, E. X.; Wu, Y.; Nicholls, J. M.; Li, R. A.; Benser, M. E. et al. Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. J. Card. Fail. 2010, 16, 590-598.
[14]
Fujimoto, K. L.; Tobita, K.; Guan, J. J.; Hashizume, R.; Takanari, K.; Alfieri, C. M.; Yutzey, K. E.; Wagner, W. R. Placement of an elastic biodegradable cardiac patch on a subacute infarcted heart leads to cellularization with early developmental cardiomyocyte characteristics. J. Card. Fail. 2012, 18, 585-595.
[15]
Ifkovits, J. L.; Tous, E.; Minakawa, M.; Morita, M.; Robb, J. D.; Koomalsingh, K. J.; Gorman III, J. H.; Gorman, R. C.; Burdick, J. A. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc. Natl. Acad. Sci. USA 2010, 107, 11507-11512.
[16]
Chen, Q. Z.; Harding, S. E.; Ali, N. N.; Lyon, A. R.; Boccaccini, A. R. Biomaterials in cardiac tissue engineering: Ten years of research survey. Mat. Sci. Eng.: R: Rep. 2008, 59, 1-37.
[17]
Lin, X.; Liu, Y.; Bai, A. B.; Cai, H. H.; Bai, Y. J.; Jiang, W.; Yang, H. L.; Wang, X. H.; Yang, L.; Sun, N. et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 2019, 3, 632-643.
[18]
Lin, Y. D.; Ko, M. C.; Wu, S. T.; Li, S. F.; Hu, J. F.; Lai, Y. J.; Harn, H. I.; Laio, I. C.; Yeh, M. L.; Yeh, H. I. et al. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater. Sci. 2014, 2, 567-580.
[19]
Zong, X. H.; Bien, H.; Chung, C. Y.; Yin, L. H.; Fang, D. F.; Hsiao, B. S.; Chu, B.; Entcheva, E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005, 26, 5330-5338.
[20]
Masoumi, N.; Larson, B. L.; Annabi, N.; Kharaziha, M.; Zamanian, B.; Shapero, K. S.; Cubberley, A. T.; Camci-Unal, G.; Manning, K. B.; Mayer, J. E.Jr. et al. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv. Healthc. Mater. 2014, 3, 929-939.
[21]
Liau, B.; Christoforou, N.; Leong, K. W.; Bursac, N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 2011, 32, 9180-9187.
[22]
Chen, Y.; Wang, J. P.; Shen, B.; Chan, C. W. Y.; Wang, C. Y.; Zhao, Y. H.; Chan, H. N.; Tian, Q.; Chen, Y. F.; Yao, C. L. et al. Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs). Macromol. Biosci. 2015, 15, 426-436.
[23]
Neal, R. A.; Jean, A.; Park, H.; Wu, P. B.; Hsiao, J.; Engelmayr, G. C.Jr.; Langer, R.; Freed, L. E. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng. Part A 2012, 19, 793-807.
[24]
Tijore, A.; Irvine, S. A.; Sarig, U.; Mhaisalkar, P.; Baisane, V.; Venkatraman, S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 2018, 10, 025003.
[25]
Bejleri, D.; Streeter, B. W.; Nachlas, A. L. Y.; Brown, M. E.; Gaetani, R.; Christman, K. L.; Davis, M. E. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv. Healthc. Mater. 2018, 7, 1800672.
[26]
Tsang, K. M. C.; Annabi, N.; Ercole, F.; Zhou, K.; Karst, D. J.; Li, F. Y.; Haynes, J. M.; Evans, R. A.; Thissen, H.; Khademhosseini, A. et al. Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv. Funct. Mater. 2015, 25, 977-986.
[27]
Stout, D. A.; Yoo, J.; Santiago-Miranda, A. N.; Webster, T. J. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. Int. J. Nanomedicine 2012, 7, 5653-5669.
[28]
Canali, C.; Heiskanen, A.; Muhammad, H. B.; Høyum, P.; Pettersen, F. J.; Hemmingsen, M.; Wolff, A.; Dufva, M.; Martinsen, Ø. G.; Emnéus, J. Bioimpedance monitoring of 3D cell culturing— Complementary electrode configurations for enhanced spatial sensitivity. Biosens. Bioelectron. 2015, 63, 72-79.
[29]
Traverse, J. H.; Henry, T. D.; Dib, N.; Patel, A. N.; Pepine, C.; Schaer, G. L.; DeQuach, J. A.; Kinsey, A. M.; Chamberlin, P.; Christman, K. L. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC: Basic Transl. Sci. 2019, 4, 659-669.
[30]
Williams, C.; Quinn, K. P.; Georgakoudi, I.; Black III, L. D. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 2014, 10, 194-204.
[31]
Godier-Furnémont, A. F.; Martens, T. P.; Koeckert, M. S.; Wan, L.; Parks, J.; Arai, K.; Zhang, G. P.; Hudson, B.; Homma, S.; Vunjak-Novakovic, G. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. USA 2011, 108, 7974-7979.
[32]
Serpooshan, V.; Zhao, M. M.; Metzler, S. A.; Wei, K.; Shah, P. B.; Wang, A.; Mahmoudi, M.; Malkovskiy, A. V.; Rajadas, J.; Butte, M. J. et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013, 34, 9048-9055.
[33]
Zimmermann, W. H.; Melnychenko, I.; Wasmeier, G.; Didié, M.; Naito, H.; Nixdorff, U.; Hess, A.; Budinsky, L.; Brune, K.; Michaelis, B. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 2006, 12, 452-458.
[34]
Li, R. K.; Jia, Z. Q.; Weisel, R. D.; Mickle, D. A.; Choi, A.; Yau, T. M. Survival and function of bioengineered cardiac grafts. Circulation 1999, 100, II-63-II-69.
[35]
Christman, K. L.; Fok, H. H.; Sievers, R. E.; Fang, Q.; Lee, R. J. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 2004, 10, 403-409.
[36]
Ruvinov, E.; Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv. Drug Deliv. Rev. 2016, 96, 54-76.
[37]
Amir, G.; Miller, L.; Shachar, M.; Feinberg, M. S.; Holbova, R.; Cohen, S.; Leor, J. Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transplant. 2009, 18, 275-282.
[38]
Sapir, Y.; Kryukov, O.; Cohen, S. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 2011, 32, 1838-1847.
[39]
Chen, J. W.; Zhan, Y. F.; Wang, Y. B.; Han, D.; Tao, B.; Luo, Z. L.; Ma, S.; Wang, Q.; Li, X.; Fan, L. et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018, 80, 154-168.
[40]
Reis, L. A.; Chiu, L. L. Y.; Liang, Y.; Hyunh, K.; Momen, A.; Radisic, M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater. 2012, 8, 1022-1036.
[41]
McDevitt, T. C.; Woodhouse, K. A.; Hauschka, S. D.; Murry, C. E.; Stayton, P. S. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mate. Res. 2003, 66A, 586-595.
[42]
Wang, Q. L.; Wang, H. J.; Li, Z. H.; Wang, Y. L.; Wu, X. P.; Tan, Y. Z. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J. Cell. Mol. Med. 2017, 21, 1751-1766.
[43]
Carrier, R. L.; Papadaki, M.; Rupnick, M.; Schoen, F. J.; Bursac, N.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 1999, 64, 580-589.
[44]
Freed, L. E.; Vunjak-Novakovic, G. Microgravity tissue engineering. In Vitro Cell. Dev. Biol. Anim. 1997, 33, 381-385.
[45]
Rane, A. A.; Chuang, J. S.; Shah, A.; Hu, D. P.; Dalton, N. D.; Gu, Y. S.; Peterson, K. L.; Omens, J. H.; Christman, K. L. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One 2011, 6, e21571.
[46]
Kraehenbuehl, T. P.; Ferreira, L. S.; Zammaretti, P.; Hubbell, J. A.; Langer, R. Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials 2009, 30, 4318-4324.
[47]
D'Amore, A.; Yoshizumi, T.; Luketich, S. K.; Wolf, M. T.; Gu, X. Z.; Cammarata, M.; Hoff, R.; Badylak, S. F.; Wagner, W. R. Bi-layered polyurethane—Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016, 107, 1-14.
[48]
Engelberg, I.; Kohn, J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991, 12, 292-304.
[49]
Noshadi, I.; Hong, S.; Sullivan, K. E.; Shirzaei, S. E.; Portillo-Lara, R.; Tamayol, A.; Shin, S. R.; Gao, A. E.; Stoppel, W. L.; Black III, L. D. et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater. Sci. 2017, 5, 2093-2105.
[50]
Ondeck, M. G.; Engler, A. J. Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J. Biomech. Eng. 2016, 138, 021003.
[51]
Rufaihah, A. J.; Vaibavi, S. R.; Plotkin, M.; Shen, J. Y.; Nithya, V.; Wang, J.; Seliktar, D.; Kofidis, T. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 2013, 34, 8195-8202.
[52]
Reis, L. A.; Chiu, L. L.; Feric, N.; Fu, L.; Radisic, M. Biomaterials in myocardial tissue engineering. J. Tissue Eng. Regen. Med. 2016, 10, 11-28.
[53]
Peña, B.; Laughter, M.; Jett, S.; Rowland, T. J.; Taylor, M. R. G.; Mestroni, L.; Park, D. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 2018, 18, 1800079.
[54]
Rane, A. A.; Christman, K. L. Biomaterials for the treatment of myocardial infarction: A 5-year update. J. Am. Coll. Cardiol. 2011, 58, 2615-2629.
[55]
Gibbs, C. L. Cardiac energetics: Sense and nonsense. Clin. Exp. Pharmacol. Physiol. 2003, 30, 598-603.
[56]
Sekine, H.; Shimizu, T.; Dobashi, I.; Matsuura, K.; Hagiwara, N.; Takahashi, M.; Kobayashi, E.; Yamato, M.; Okano, T. Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng. Part A 2011, 17, 2973-2980.
[57]
Tomita, S.; Li, R. K.; Weisel, R. D.; Mickle, D. A.; Kim, E. J.; Sakai, T.; Jia, Z. Q. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999, 100, II-247-II-256.
[58]
Gnecchi, M.; He, H. M.; Liang, O. D.; Melo, L. G.; Morello, F.; Mu, H.; Noiseux, N.; Zhang, L. N.; Pratt, R. E.; Ingwall, J. S. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 2005, 11, 367-368.
[59]
van Laake, L. W.; Passier, R.; Monshouwer-Kloots, J.; Verkleij, A. J.; Lips, D. J.; Freund, C.; den Ouden, K.; Ward-van Oostwaard, D.; Korving, J.; Tertoolen, L. G. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007, 1, 9-24.
[60]
Laflamme, M. A.; Chen, K. Y.; Naumova, A. V.; Muskheli, V.; Fugate, J. A.; Dupras, S. K.; Reinecke, H.; Xu, C. H.; Hassanipour, M.; Police, S. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 2007, 25, 1015-1024.
[61]
Shadrin, I. Y.; Allen, B. W.; Qian, Y.; Jackman, C. P.; Carlson, A. L.; Juhas, M. E.; Bursac, N. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 2017, 8, 1825.
[62]
Limbourg, F. P.; Drexler, H. Bone marrow stem cells for myocardial infarction: Effector or mediator? Circ. Res. 2005, 96, 6-8.
[63]
Perin, E. C.; Willerson, J. T.; Pepine, C. J.; Henry, T. D.; Ellis, S. G.; Zhao, D. X. M.; Silva, G. V.; Lai, D. J.; Thomas, J. D.; Kronenberg, M. W. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: The FOCUS-CCTRN trial. JAMA 2012, 307, 1717-1726.
[64]
Heldman, A. W.; DiFede, D. L.; Fishman, J. E.; Zambrano, J. P.; Trachtenberg, B. H.; Karantalis, V.; Mushtaq, M.; Williams, A. R.; Suncion, V. Y.; McNiece, I. K. et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA 2014, 311, 62-73.
[65]
Hare, J. M.; Fishman, J. E.; Gerstenblith, G.; DiFede Velazquez, D. L.; Zambrano, J. P.; Suncion, V. Y.; Tracy, M.; Ghersin, E.; Johnston, P. V.; Brinker, J. A. et al. Comparison of allogeneic vs. autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. JAMA 2012, 308, 2369-2379.
[66]
Gude, N. A.; Sussman, M. A. Chasing c-Kit through the heart: Taking a broader view. Pharmacol. Res. 2018, 127, 110-115.
[67]
Bianconi, V.; Sahebkar, A.; Kovanen, P.; Bagaglia, F.; Ricciuti, B.; Calabrò, P.; Patti, G.; Pirro, M. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. Pharmacol. Ther. 2018, 181, 156-168.
[68]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663-676.
[69]
Lian, X. J.; Zhang, J. H.; Azarin, S. M.; Zhu, K. X.; Hazeltine, L. B.; Bao, X. P.; Hsiao, C.; Kamp, T. J.; Palecek, S. P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 2013, 8, 162-175.
[70]
Burridge, P. W.; Matsa, E.; Shukla, P.; Lin, Z. C.; Churko, J. M.; Ebert, A. D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N. M. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014, 11, 855-860.
[71]
Zhu, W. Z.; Van Biber, B.; Laflamme, M. A. Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. In Human Pluripotent Stem Cells: Methods and Protocols; Schwartz, P. H.; Wesselschmidt, R. L., Eds.; Humana Press: Totowa, New Jersey, USA, 2011; pp 419-431.
[72]
Tu, C. Y.; Chao, B. S.; Wu, J. C. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 2018, 123, 512-514.
[73]
Dai, W. D.; Wold, L. E.; Dow, J. S.; Kloner, R. A. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: A novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 2005, 46, 714-719.
[74]
Singelyn, J. M.; Sundaramurthy, P.; Johnson, T. D.; Schup-Magoffin, P. J.; Hu, D. P.; Faulk, D. M.; Wang, J.; Mayle, K. M.; Bartels, K.; Salvatore, M. et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 2012, 59, 751-763.
[75]
Wassenaar, J. W.; Gaetani, R.; Garcia, J. J.; Braden, R. L.; Luo, C. G.; Huang, D.; DeMaria, A. N.; Omens, J. H.; Christman, K. L. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J. Am. Coll. Cardiol. 2016, 67, 1074-1086.
[76]
Seif-Naraghi, S. B.; Singelyn, J. M.; Salvatore, M. A.; Osborn, K. G.; Wang, J. J.; Sampat, U.; Kwan, O. L.; Strachan, G. M.; Wong, J.; Schup-Magoffin, P. J. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 2013, 5, 173ra25.
[77]
Caspi, O.; Huber, I.; Kehat, I.; Habib, M.; Arbel, G.; Gepstein, A.; Yankelson, L.; Aronson, D.; Beyar, R.; Gepstein, L. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 2007, 50, 1884-1893.
[78]
Shiba, Y.; Fernandes, S.; Zhu, W. Z.; Filice, D.; Muskheli, V.; Kim, J.; Palpant, N. J.; Gantz, J.; Moyes, K. W.; Reinecke, H. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012, 489, 322-325.
[79]
Kutschka, I.; Chen, I. Y.; Kofidis, T.; Arai, T.; von Degenfeld, G.; Sheikh, A. Y.; Hendry, S. L.; Pearl, J.; Hoyt, G.; Sista, R. et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 2006, 114, I-167-I-173.
[80]
Ebelt, H.; Jungblut, M.; Zhang, Y.; Kubin, T.; Kostin, S.; Technau, A.; Oustanina, S.; Niebrügge, S.; Lehmann, J.; Werdan, K. et al. Cellular cardiomyoplasty: Improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 2007, 25, 236-244.
[81]
Chong, J. J.; Yang, X. L.; Don, C. W.; Minami, E.; Liu, Y. W.; Weyers, J. J.; Mahoney, W. M.; Van Biber, B.; Cook, S. M.; Palpant, N. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014, 510, 273-277.
[82]
Zhang, J. Y.; Zhu, W. Q.; Radisic, M.; Vunjak-Novakovic, G. Can we engineer a human cardiac patch for therapy? Circ. Res. 2018, 123, 244-265.
[83]
Chi, N. H.; Yang, M. C.; Chung, T. W.; Chou, N. K.; Wang, S. S. Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr. Polym. 2013, 92, 591-597.
[84]
Sarig, U.; Sarig, H.; de-Berardinis, E.; Chaw, S. Y.; Nguyen, E. B.; Ramanujam, V. S.; Thang, V. D.; Al-Haddawi, M.; Liao, S.; Seliktar, D. et al. Natural myocardial ECM patch drives cardiac progenitor based restoration even after scarring. Acta Biomater. 2016, 44, 209-220.
[85]
Gu, X. Z.; Matsumura, Y.; Tang, Y.; Roy, S.; Hoff, R.; Wang, B.; Wagner, W. R. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials 2017, 133, 132-143.
[86]
Piao, H.; Kwon, J. S.; Piao, S.; Sohn, J. H.; Lee, Y. S.; Bae, J. W.; Hwang, K. K.; Kim, D. W.; Jeon, O.; Kim, B. S. et al. Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 2007, 28, 641-649.
[87]
Wang, Q. J.; Yang, H.; Bai, A. B.; Jiang, W.; Li, X. Y.; Wang, X. H.; Mao, Y. S.; Lu, C.; Qian, R. Z.; Guo, F. et al. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction. Biomaterials 2016, 105, 52-65.
[88]
Jawad, H.; Ali, N. N.; Lyon, A. R.; Chen, Q. Z.; Harding, S. E.; Boccaccini, A. R. Myocardial tissue engineering: A review. J. Tissue Eng. Regen. Med. 2007, 1, 327-342.
[89]
Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13-22.
[90]
Dalby, M. J.; Gadegaard, N.; Oreffo, R. O. C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558-569.
[91]
Antzelevitch, C.; Burashnikov, A. Overview of basic mechanisms of cardiac arrhythmia. Card. Electrophysiol. Clin. 2011, 3, 23-45.
[92]
Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
[93]
Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H. W.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720-725.
[94]
You, J. O.; Rafat, M.; Ye, G. J. C.; Auguste, D. T. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011, 11, 3643-3648.
[95]
Navaei, A.; Saini, H.; Christenson, W.; Sullivan, R. T.; Ros, R.; Nikkhah, M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 2016, 41, 133-146.
[96]
Fleischer, S.; Shevach, M.; Feiner, R.; Dvir, T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 2014, 6, 9410-9414.
[97]
Shevach, M.; Fleischer, S.; Shapira, A.; Dvir, T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014, 14, 5792-5796.
[98]
Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D. et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 2009, 4, 126-133.
[99]
Zhou, J.; Chen, J.; Sun, H. Y.; Qiu, X. Z.; Mou, Y. C.; Liu, Z. Q.; Zhao, Y. W.; Li, X.; Han, Y.; Duan, C. M. et al. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci. Rep. 2015, 4, 3733.
[100]
Roshanbinfar, K.; Mohammadi, Z.; Sheikh-Mahdi Mesgar, A.; Dehghan, M. M.; Oommen, O. P.; Hilborn, J.; Engel, F. B. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater. Sci. 2019, 7, 3906-3917.
[101]
Liu, Y. W.; Liang, X.; Wang, S. Y.; Hu, K. Electrospun poly(lactic-co-glycolic acid)/multiwalled carbon nanotube nanofibers for cardiac tissue engineering. J. Biomater. Tissue Eng. 2016, 6, 719-728.
[102]
Norahan, M. H.; Amroon, M.; Ghahremanzadeh, R.; Mahmoodi, M.; Baheiraei, N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J. Biomed. Mater. Res. Part A 2019, 107, 204-219.
[103]
Nazari, H.; Azadi, S.; Hatamie, S.; Zomorrod, M. S.; Ashtari, K.; Soleimani, M.; Hosseinzadeh, S. Fabrication of graphene-silver/ polyurethane nanofibrous scaffolds for cardiac tissue engineering. Polym. Adv. Technol. 2019, 30, 2086-2099.
[104]
Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. 2019, 119, 9136-9152.
[105]
Wang, X. T.; Wang, L. Y.; Wu, Q.; Bao, F.; Yang, H. T.; Qiu, X. Z.; Chang, J. Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl. Mater. Interfaces 2019, 11, 1449-1468.
[106]
Richards, D. J.; Tan, Y.; Coyle, R.; Li, Y.; Xu, R. Y.; Yeung, N.; Parker, A.; Menick, D. R.; Tian, B. Z.; Mei, Y. Nanowires and electrical stimulation synergistically improve functions of hiPSC cardiac spheroids. Nano Lett. 2016, 16, 4670-4678.
[107]
Tan, Y.; Richards, D.; Xu, R. Y.; Stewart-Clark, S.; Mani, S. K.; Borg, T. K.; Menick, D. R.; Tian, B. Z.; Mei, Y. Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells. Nano Lett. 2015, 15, 2765-2772.
[108]
Chen, L.; Zhou, X. J.; He, C. L. Mesoporous silica nanoparticles for tissue-engineering applications. WILEs Nanomed. Nanobiotechnol. 2019, 11, e1573.
[109]
Hozayen, W. G.; Mahmoud, A. M.; Desouky, E. M.; El-Nahass, E. S.; Soliman, H. A.; Farghali, A. A. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed. Pharmacother. 2019, 109, 2527-2538.
[110]
Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019, 365, 482-487.
[111]
Skylar-Scott, M. A.; Uzel, S. G. M.; Nam, L. L.; Ahrens, J. H.; Truby, R. L.; Damaraju, S.; Lewis, J. A. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 2019, 5, eaaw2459.
[112]
Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 2019, 6, 1900344.
[113]
Grigoryan, B.; Paulsen, S. J.; Corbett, D. C.; Sazer, D. W.; Fortin, C. L.; Zaita, A. J.; Greenfield, P. T.; Calafat, N. J.; Gounley, J. P.; Ta, A. H. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458-464.
[114]
Shin, S. R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y. S.; Akbari, M.; Jung, S. M.; Kim, D.; Comotto, M. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 2016, 28, 3280-3289.
[115]
Zhu, K.; Shin, S. R.; van Kempen, T.; Li, Y. C.; Ponraj, V.; Nasajpour, A.; Mandla, S.; Hu, N.; Liu, X.; Leijten, J. et al. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv. Funct. Mater. 2017, 27, 1605352.
[116]
Fu, T. M.; Hong, G. S.; Viveros, R. D.; Zhou, T.; Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl. Acad. Sci. USA 2017, 114, E10046-E10055.
[117]
Schuhmann, T. G.Jr.; Zhou, T.; Hong, G. S.; Lee, J. M.; Fu, T. M.; Park, H. G.; Lieber, C. M. Syringe-injectable mesh electronics for stable chronic rodent electrophysiology. J. Vis. Exp. 2018, 137, e58003.
[118]
Abbott, J.; Ye, T. Y.; Krenek, K.; Gertner, R. S.; Ban, S.; Kim, Y.; Qin, L.; Wu, W. X.; Park, H.; Ham, D. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 2019, .
[119]
Cantwell, C. D.; Mohamied, Y.; Tzortzis, K. N.; Garasto, S.; Houston, C.; Chowdhury, R. A.; Ng, F. S.; Bharath, A. A.; Peters, N. S. Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling. Comput. Biol. Med. 2019, 104, 339-351.
[120]
Golgooni, Z.; Mirsadeghi, S.; Baghshah, M. S.; Ataee, P.; Baharvand, H.; Pahlavan, S.; Rabiee, H. R. Deep learning-based proarrhythmia analysis using field potentials recorded from human pluripotent stem cells derived cardiomyocytes. IEEE J. Trans. Eng. Health Med.—Jtehm 2019, 7, 1900203.
[121]
Lind, J. U.; Busbee, T. A.; Valentine, A. D.; Pasqualini, F. S.; Yuan, H.; Yadid, M.; Park, S. J.; Kotikian, A.; Nesmith, A. P.; Campbell, P. H. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 2017, 16, 303-308.
[122]
Du, Z. J.; Luo, X. L.; Weaver, C.; Cui, X. T. Poly(3,4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. J. Mater. Chem. C 2015, 3, 6515-6524.
[123]
Spira, M. E.; Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 2013, 8, 83-94.
[124]
Anderson, D. J.; Kaplan, D. I.; Bell, K. M.; Koutsis, K.; Haynes, J. M.; Mills, R. J.; Phelan, D. G.; Qian, E. L.; Leitoguinho, A. R.; Arasaratnam, D. et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat. Commun. 2018, 9, 1373.
[125]
Tahrir, F. G.; Gordon, J.; Feldman, A. M.; Cheung, J.; Khalili, K.; Mohseni Ahooyi, T. Evidence for the impact of BAG3 on electrophysiological activity of primary culture of neonatal cardiomyocytes. J. Cell. Physiol. 2019, 234, 18371-18381.
[126]
Asahi, Y.; Hamada, T.; Hattori, A.; Matsuura, K.; Odaka, M.; Nomura, F.; Kaneko, T.; Abe, Y.; Takasuna, K.; Sanbuissho, A. et al. On-chip spatiotemporal electrophysiological analysis of human stem cell derived cardiomyocytes enables quantitative assessment of proarrhythmia in drug development. Sci. Rep. 2018, 8, 14536.
[127]
Fehrentz, T.; Huber, F. M. E.; Hartrampf, N.; Bruegmann, T.; Frank, J. A.; Fine, N. H. F.; Malan, D.; Danzl, J. G.; Tikhonov, D. B.; Sumser, M. et al. Optical control of L-type Ca2+ channels using a diltiazem photoswitch. Nat. Chem. Biol. 2018, 14, 764-767.
[128]
Rastogi, S. K.; Bliley, J.; Shiwarski, D. J.; Raghavan, G.; Feinberg, A. W.; Cohen-Karni, T. Graphene microelectrode arrays for electrical and optical measurements of human stem cell-derived cardiomyocytes. Cell. Mol. Bioeng. 2018, 11, 407-418.
[129]
Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185-190.
[130]
Lin, Z. C.; McGuire, A. F.; Burridge, P. W.; Matsa, E.; Lou, H. Y.; Wu, J. C.; Cui, B. X. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 2017, 3, 16080.
[131]
Fendyur, A.; Spira, M. E. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front. Neuroeng. 2012, 5, 21.
[132]
Santoro, F.; Schnitker, J.; Panaitov, G.; Offenhäusser, A. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. Nano Lett. 2013, 13, 5379-5384.
[133]
Santoro, F.; Dasgupta, S.; Schnitker, J.; Auth, T.; Neumann, E.; Panaitov, G.; Gompper, G.; Offenhäusser, A. Interfacing electrogenic cells with 3D nanoelectrodes: Position, shape, and size matter. ACS Nano 2014, 8, 6713-6723.
[134]
Desbiolles, B. X. E.; de Coulon, E.; Bertsch, A.; Rohr, S.; Renaud, P. Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 2019, 19, 6173-6181.
[135]
Banks, D. J.; Balachandran, W.; Richards, P. R.; Ewins, D. Instrumentation to evaluate neural signal recording properties of micromachined microelectrodes inserted in invertebrate nerve. Physiol. Meas. 2002, 23, 437-448.
[136]
Prohaska, O. J.; Olcaytug, F.; Pfundner, P.; Dragaun, H. Thin-film multiple electrode probes: Possibilities and limitations. IEEE Trans. Biomed. Eng. 1986, BME-33, 223-229.
[137]
Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 2012, 12, 2639-2644.
[138]
Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010, 329, 830-834.
[139]
Zhao, Y. L.; You, S. S.; Zhang, A. Q.; Lee, J. H.; Huang, J. L.; Lieber, C. M. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 2019, 14, 783-790.
[140]
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986-994.
[141]
Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 2016, 15, 679-685.
[142]
Feiner, R.; Fleischer, S.; Shapira, A.; Kalish, O.; Dvir, T. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J. Control. Release 2018, 281, 189-195.
[143]
Kalmykov, A.; Huang, C.; Bliley, J.; Shiwarski, D.; Tashman, J.; Abdullah, A.; Rastogi, S. K.; Shukla, S.; Mataev, E.; Feinberg, A. W. et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 2019, 5, eaax0729.
[144]
Li, Q.; Nan, K.; Le Floch, P.; Lin, Z. W.; Sheng, H.; Blum, T. S.; Liu, J. Cyborg organoids: Implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 2019, 19, 5781-5789.
[145]
Dai, X.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 2016, 11, 776-782.
[146]
Liberski, A.; Liberski, N.; Raynaud, C.; Bollensdorff, C.; Yacoub, M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob. Cardiol. Sci. Pract. 2016, 2016, 4.
[147]
Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143.
[148]
Hong, G. S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for single-neuron chronic recording from the retina in awake mice. Science 2018, 360, 1447-1451.
[149]
Musk, E.; Neuralink. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet. Res. 2019, 21, e16194.
[150]
Zhang, Y. S.; Aleman, J.; Arneri, A.; Bersini, S.; Piraino, F.; Shin, S. R.; Dokmeci, M. R.; Khademhosseini, A. From cardiac tissue engineering to heart-on-a-chip: Beating challenges. Biomed. Mater. 2015, 10, 034006.
Nano Research
Pages 1253-1267
Cite this article:
Bolonduro OA, Duffy BM, Rao AA, et al. From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 2020, 13(5): 1253-1267. https://doi.org/10.1007/s12274-020-2682-3
Topics:

1098

Views

32

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 01 December 2019
Revised: 13 January 2020
Accepted: 20 January 2020
Published: 26 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return