AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3)

Sha Tan1Brian M. Tackett2Qun He2Ji Hoon Lee2Jingguang G. Chen2,3( )Stanislaus S. Wong1( )
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
Chemistry Department, Building 555, Brookhaven National Laboratory, Upton, NY 11973, USA
Show Author Information

Graphical Abstract

Abstract

We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology. In particular, we have generated a thermodynamically unstable but catalytically promising nitrogen-rich phase of tungsten via a hydrothermal generation of a tungsten oxide intermediate and subsequent annealing in ammonia. The net product consisted of three-dimensional (3D) micron-scale flower-like motifs of W2N3; this architecture not only evinced high structural stability but also incorporated the favorable properties of constituent two-dimensional nanosheets. From a performance perspective, as-prepared 3D W2N3 demonstrated promising hydrogen evolution reaction (HER) activities, especially in an acidic environment with a measured overpotential value of -101 mV at a current density of 10 mA/cm2. To further enhance the electrocatalytic activity, small amounts of precious metal nanoparticles (such as Pt and Au), consisting of variable sizes, were uniformly deposited onto the underlying 3D W2N3 motifs using a facile direct deposition method; these composites were applied towards the CO2 reduction reaction (CO2RR). A highlight of this series of experiments was that Au/W2N3 composites were found to be a much more active HER (as opposed to either a CO2RR or a methanol oxidation reaction (MOR)) catalyst.

Electronic Supplementary Material

Download File(s)
12274_2020_2687_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-549.
[2]
Jin, H. Y.; Zhang, H.; Chen, J. Y.; Mao, S. J.; Jiang, Z.; Wang, Y. A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 10967-10975.
[3]
Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res .2016, 9, 329-343.
[4]
Yin, S. B.; Wang, P.; Lu, J. J.; Wen, Y.; Luo, L.; Key, J.; Wang, N. Z.; Shen, P. K. Tungsten nitride decorated CNTs as efficient hybrid supports for PtRh alloys in electrocatalytic ethanol oxidation. Int. J. Hydrogen Energy 2017, 42, 22805-22813.
[5]
Ham, D. J.; Lee, J. S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873-899.
[6]
Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater .2018, 30, 1805655.
[7]
Wang, S. M.; Yu, X. H.; Lin, Z. J.; Zhang, R. F.; He, D. W.; Qin, J. Q.; Zhu, J. L.; Han, J. T.; Wang, L.; Mao, H. K. et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides. Chem. Mater .2012, 24, 3023-3028.
[8]
Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction. J. Am. Ceram. Soc .2018, 101, 949-956.
[9]
Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy Fuels 2019, 3, 366-381.
[10]
Varga, T.; Haspel, H.; Kormányos, A.; Janáky, C.; Kukovecz, Á.; Kónya, Z. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity. Electrochim. Acta 2017, 256, 299-306.
[11]
Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev .2016, 45, 5541-5588.
[12]
Zhang, J.; Chen, J. W.; Yang, H. W.; Fan, J. L.; Zhou, F. L.; Wang, Y. C.; Wang, G.; Wang, R. L. Efficient synthesis of nitrogen-doped carbon with flower-like tungsten nitride nanosheets for improving the oxygen reduction reactions. RSC Adv .2017, 7, 33921-33928.
[13]
Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808-1825.
[14]
Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci .2018, 5, 1700464.
[15]
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal .2017, 7, 7196-7225.
[16]
Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev .2011, 111, 7625-7651.
[17]
Xie, Y.; Zhang, Y.; Zhang, M. R.; Zhang, Y.; Liu, J. Q.; Zhou, Q.; Wang, W. F.; Cui, J. W.; Wang, Y.; Chen, Y. et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int. J. Hydrogen Energy 2017, 42, 25924-25932.
[18]
Meng, M. C.; Yan, H. J.; Jiao, Y. Q.; Wu, A. P.; Zhang, X. M.; Wang, R. H.; Tian, C. G. A “1-methylimidazole-fixation” route to anchor small-sized nitrides on carbon supports as non-Pt catalysts for the hydrogen evolution reaction. RSC Adv .2016, 6, 29303-29307.
[19]
Wannakao, S.; Artrith, N.; Limtrakul, J.; Kolpak, A. M. Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides. J. Phys. Chem. C 2017, 121, 20306-20314.
[20]
Abbas, S. C.; Wu, J.; Huang, Y. Y.; Babu, D. D.; Anandhababu, G.; Ghausi, M. A.; Wu, M. X.; Wang, Y. B. Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 16-23.
[21]
Choi, D.; Kumta, P. N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Am. Ceram. Soc .2007, 90, 3113-3120.
[22]
Qiu, J. D.; Wang, G. C.; Liang, R. P.; Xia, X. H.; Yu, H. W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 2011, 115, 15639-15645.
[23]
Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci .2017, 10, 1180-1185.
[24]
Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater .2018, 28, 1804762.
[25]
Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun .2019, 10, 3724.
[26]
Xu, D. D.; Jiang, T. F.; Wang, D. J.; Chen, L. P.; Zhang, L. J.; Fu, Z. W.; Wang, L. L.; Xie, T. F. pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 9321-9327.
[27]
Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S. et al. Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci .2018, 5, 1800406.
[28]
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater .2019, 31, 1902709.
[29]
Grinou, A.; Yun, Y.; Cho, S.; Park, H.; Jin, H. J. Dispersion of Pt nanoparticle-doped reduced graphene oxide using aniline as a stabilizer. Materials 2012, 5, 2927-2936.
[30]
Scofield, M. E.; Koenigsmann, C.; Bobb-Semple, D.; Tao, J.; Tong, X.; Wang, L.; Lewis, C. S.; Vukmirovic, M. B.; Zhu, Y. M.; Adzic, R. R. et al. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction. Catal. Sci. Technol .2016, 6, 2435-2450.
[31]
Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett .2013, 4, 1227-1232.
[32]
Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc .2010, 132, 15603-15609.
Nano Research
Pages 1434-1443
Cite this article:
Tan S, Tackett BM, He Q, et al. Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Research, 2020, 13(5): 1434-1443. https://doi.org/10.1007/s12274-020-2687-y
Topics:

779

Views

26

Crossref

N/A

Web of Science

26

Scopus

6

CSCD

Altmetrics

Received: 27 November 2019
Revised: 14 January 2020
Accepted: 29 January 2020
Published: 09 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return