[1]
Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-549.
[2]
Jin, H. Y.; Zhang, H.; Chen, J. Y.; Mao, S. J.; Jiang, Z.; Wang, Y. A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 10967-10975.
[3]
Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res .2016, 9, 329-343.
[4]
Yin, S. B.; Wang, P.; Lu, J. J.; Wen, Y.; Luo, L.; Key, J.; Wang, N. Z.; Shen, P. K. Tungsten nitride decorated CNTs as efficient hybrid supports for PtRh alloys in electrocatalytic ethanol oxidation. Int. J. Hydrogen Energy 2017, 42, 22805-22813.
[5]
Ham, D. J.; Lee, J. S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873-899.
[6]
Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater .2018, 30, 1805655.
[7]
Wang, S. M.; Yu, X. H.; Lin, Z. J.; Zhang, R. F.; He, D. W.; Qin, J. Q.; Zhu, J. L.; Han, J. T.; Wang, L.; Mao, H. K. et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides. Chem. Mater .2012, 24, 3023-3028.
[8]
Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction. J. Am. Ceram. Soc .2018, 101, 949-956.
[9]
Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy Fuels 2019, 3, 366-381.
[10]
Varga, T.; Haspel, H.; Kormányos, A.; Janáky, C.; Kukovecz, Á.; Kónya, Z. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity. Electrochim. Acta 2017, 256, 299-306.
[11]
Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev .2016, 45, 5541-5588.
[12]
Zhang, J.; Chen, J. W.; Yang, H. W.; Fan, J. L.; Zhou, F. L.; Wang, Y. C.; Wang, G.; Wang, R. L. Efficient synthesis of nitrogen-doped carbon with flower-like tungsten nitride nanosheets for improving the oxygen reduction reactions. RSC Adv .2017, 7, 33921-33928.
[13]
Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808-1825.
[14]
Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci .2018, 5, 1700464.
[15]
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal .2017, 7, 7196-7225.
[16]
Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev .2011, 111, 7625-7651.
[17]
Xie, Y.; Zhang, Y.; Zhang, M. R.; Zhang, Y.; Liu, J. Q.; Zhou, Q.; Wang, W. F.; Cui, J. W.; Wang, Y.; Chen, Y. et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int. J. Hydrogen Energy 2017, 42, 25924-25932.
[18]
Meng, M. C.; Yan, H. J.; Jiao, Y. Q.; Wu, A. P.; Zhang, X. M.; Wang, R. H.; Tian, C. G. A “1-methylimidazole-fixation” route to anchor small-sized nitrides on carbon supports as non-Pt catalysts for the hydrogen evolution reaction. RSC Adv .2016, 6, 29303-29307.
[19]
Wannakao, S.; Artrith, N.; Limtrakul, J.; Kolpak, A. M. Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides. J. Phys. Chem. C 2017, 121, 20306-20314.
[20]
Abbas, S. C.; Wu, J.; Huang, Y. Y.; Babu, D. D.; Anandhababu, G.; Ghausi, M. A.; Wu, M. X.; Wang, Y. B. Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 16-23.
[21]
Choi, D.; Kumta, P. N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Am. Ceram. Soc .2007, 90, 3113-3120.
[22]
Qiu, J. D.; Wang, G. C.; Liang, R. P.; Xia, X. H.; Yu, H. W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 2011, 115, 15639-15645.
[23]
Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci .2017, 10, 1180-1185.
[24]
Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater .2018, 28, 1804762.
[25]
Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun .2019, 10, 3724.
[26]
Xu, D. D.; Jiang, T. F.; Wang, D. J.; Chen, L. P.; Zhang, L. J.; Fu, Z. W.; Wang, L. L.; Xie, T. F. pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 9321-9327.
[27]
Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S. et al. Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci .2018, 5, 1800406.
[28]
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater .2019, 31, 1902709.
[29]
Grinou, A.; Yun, Y.; Cho, S.; Park, H.; Jin, H. J. Dispersion of Pt nanoparticle-doped reduced graphene oxide using aniline as a stabilizer. Materials 2012, 5, 2927-2936.
[30]
Scofield, M. E.; Koenigsmann, C.; Bobb-Semple, D.; Tao, J.; Tong, X.; Wang, L.; Lewis, C. S.; Vukmirovic, M. B.; Zhu, Y. M.; Adzic, R. R. et al. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction. Catal. Sci. Technol .2016, 6, 2435-2450.
[31]
Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett .2013, 4, 1227-1232.
[32]
Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc .2010, 132, 15603-15609.