AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene

Dongxing Tan1,2Jianling Zhang1,2,3( )Lei Yao4Xiuniang Tan1,2Xiuyan Cheng1,2Qiang Wan1,2Buxing Han1,2,3Lirong Zheng4Jing Zhang4
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
Beijng Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

The electroreduction of CO2 to valuable chemicals and fuels offers an effective mean for energy storage. Although CO2 has been efficiently converted into C1 products (e.g., carbon monoxide, formic acid, methane and methanol), its convention into high value-added multicarbon hydrocarbons with high selectivity and activity still remains challenging. Here we demonstrate the formation of multi-shelled CuO microboxes for the efficient and selective electrocatalytic CO2 reduction to C2H4. Such a structure favors the accessibility of catalytically active sites, improves adsorption of reaction intermediate (CO), inhibits the diffusion of produced OH- and promotes C-C coupling reaction. Owing to these unique advantages, the multi-shelled CuO microboxes can effectively convert CO2 into C2H4 with a maximum faradaic efficiency of 51.3% in 0.1 M K2SO4. This work provides an effective way to improve CO2 reduction efficiency via constructing micro- and nanostructures of electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2020_2692_MOESM1_ESM.pdf (4.1 MB)

References

[1]
Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.
[2]
Yu, X. X.; Yang, Z. Z.; Qiu, B.; Guo, S. E.; Yang, P.; Yu, B.; Zhang, H. Y.; Zhao, Y. F.; Yang, X. Z.; Han, B. X. et al. Eosin Y-functionalized conjugated organic polymers for visible-light-driven CO2 reduction with H2O to CO with high efficiency. Angew. Chem., Int. Ed. 2019, 58, 632-636.
[3]
Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147.
[4]
Tan, D. X.; Zhang, J. L.; Cheng, X. Y.; Tan, X. N.; Shi, J. B.; Zhang, B. X.; Han, B. X.; Zheng, L. R.; Zhang, J. CuxNiy alloy nanoparticles embedded in a nitrogen-carbon network for efficient conversion of carbon dioxide. Chem. Sci. 2019, 10, 4491-4496.
[5]
Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.
[6]
Hursán, D.; Samu, A. A.; Janovák, L.; Artyushkova, K.; Asset, T.; Atanassov, P.; Janáky, C. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule 2019, 3, 1719-1933.
[7]
Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.
[8]
Choi, Y. W.; Scholten, F.; Sinev, I.; Roldan Cuenya, B. Enhanced stability and CO/Formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 2019, 141, 5261-5266.
[9]
Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. S.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290-4293.
[10]
Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222-228.
[11]
Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. R. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2019, 2, 55-61.
[12]
Tan, D. X.; Cui, C. N.; Shi, J. B.; Luo, Z. X.; Zhang, B. X.; Tan, X. N.; Han, B. X.; Zheng, L. R.; Zhang, J.; Zhang, J. L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019, 12, 1167-1172.
[13]
Sun, X. F.; Chen, C. J.; Liu, S. J.; Hong, S.; Zhu, Q. G.; Qian, Q. L.; Han, B. X.; Zhang, J.; Zheng, L. R. Aqueous CO2 reduction with high efficiency using α-Co(OH)2-supported atomic Ir electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 4669-4673.
[14]
Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.
[15]
Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.
[16]
Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149-14153.
[17]
Yang, D. X.; Zhu, Q. G.; Chen, C. J.; Liu, H. Z.; Liu, Z. M.; Zhao, Z. J.; Zhang, X. Y.; Liu, S. J.; Han, B. X. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 2019, 10, 677.
[18]
Mi, Y. Y.; Peng, X. Y.; Liu, X. J.; Luo, J. Selective formation of C2 products from electrochemical CO2 reduction over Cu1.8Se nanowires. ACS Appl. Energy Mater. 2018, 1, 5119-5123.
[19]
Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791-5797.
[20]
Zhou, Y. S.; Che, F. J.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; de Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974-980.
[21]
Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; de Luna, P.; Dinh, C. T.; Hu, Y. F. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.
[22]
Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W. L.; Zhu, J. J.; Jiao, F. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 2018, 30, 1803111.
[23]
Dinh, C. T.; Burdyny, T.; Kibria, M.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F.; Kiani, A.; Edwards, J. P.; de Luna, P.; Bushuyev, O. S. et al. CO2 Electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783-787.
[24]
Amaniampong, P. N.; Trinh, Q. T.; Wang, B.; Borgna, A.; Yang, Y. H.; Mushrif, S. H. Biomass oxidation: Formyl C-H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angew. Chem., Int. Ed. 2015, 54, 8928-8933.
[25]
Dang, R.; Jia, X. L.; Liu, X.; Ma, H. T.; Gao, H. Y.; Wang, G. Controlled synthesis of hierarchical Cu nanosheets@CuO nanorods as high-performance anode material for lithium-ion batteries. Nano Energy 2017, 33, 427-435.
[26]
Li, W.; Feng, X. L.; Zhang, Z.; Jin, X.; Liu, D. P.; Zhang, Y. A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Adv. Funct. Mater. 2018, 28, 1802559.
[27]
Wang, F.; He, X. X.; Sun, L. M.; Chen, J. Q.; Wang, X. J.; Xu, J. H.; Han, X. G. Engineering an N-doped TiO2@N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 2018, 6, 2091-2099.
[28]
Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Zhao, X. S.; Diniz da Costa, J. C. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4. Chem. Commun. 2015, 51, 9291-9293.
[29]
Kim, A. Y.; Kim, M. K.; Cho, K.; Woo, J.; Lee, Y.; Han, S. H.; Byun, D.; Choi, W.; Lee, J. K. One-step catalytic synthesis of CuO/Cu2O in a graphitized porous C matrix derived from the cu-based metal-organic framework for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 19514-19523.
[30]
Groothaert, M. H.; van Bokhoven, J. A.; Battiston, A. A.; Weckhuysen, B. M.; Schoonheydt, R. A. Bis(μ-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: A combined in situ XAFS, UV-Vis-near-IR, and kinetic study. J. Am. Chem. Soc. 2003, 125, 7629-7640.
[31]
Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. F. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2019, 3, 1800449.
[32]
Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681-8689.
[33]
de Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103-110.
[34]
Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68-71.
[35]
Tan, X. Y.; Yu, C.; Zhao, C. T.; Huang, H. W.; Yao, X. C.; Han, X. T.; Guo, W.; Cui, S.; Huang, H. L.; Qiu, J. S. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2. ACS Appl. Mater. Interfaces 2019, 11, 9904-9910.
[36]
Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889-14892.
[37]
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
[38]
Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326-11353.
[39]
Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680-6684.
[40]
Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796-800.
[41]
Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 2019, 10, 32.
[42]
Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624-4633.
[43]
Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L. Y.; Panetti, G. B.; Yeo, B. S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 2016, 120, 20058-20067.
[44]
Guan, B. Y., Yu, L.; Lou, X. W. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 2386-2389.
[45]
Guan, B. Y.; Kushima, A.; Yu, L.; Li, S.; Li, J.; Lou, X. W. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605902.
Nano Research
Pages 768-774
Cite this article:
Tan D, Zhang J, Yao L, et al. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Research, 2020, 13(3): 768-774. https://doi.org/10.1007/s12274-020-2692-1
Topics:

824

Views

69

Crossref

N/A

Web of Science

64

Scopus

5

CSCD

Altmetrics

Received: 01 December 2019
Revised: 06 January 2020
Accepted: 29 January 2020
Published: 26 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return