AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

"Nanospace engineering" by the growth of nano metal-organic framework on dendritic fibrous nanosilica (DFNS) and DFNS/ gold hybrids

Ngoc Minh TranSoeun JungHyojong Yoo( )
Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Advanced hybrid nanomaterials (nanohybrids) with unique tailored morphologies and compositions have been used for the target-oriented catalysts due to the structural or supportive properties of each moiety and the synergistic properties of the individual components. The rational design and development of nanohybrids by integrating highly porous silica into a nano metal-organic framework (NMOF) are expected to enable unique nanospace engineering in the resulting systems to optimize their utility in the target areas. Herein, we report the design and fabrication of advanced nanohybrids composed of dendritic fibrous nanosilica (DFNS) and DFNS/gold (DFNS/Au) hybrids as the core and zinc-based NMOF (Zn-NMOF) as the shell (DFNS@Zn-NMOF) through a solution-based approach. The combined fibrous morphology of DFNS and micropores of NMOF can be directly employed for nanospace engineering in the resulting multi-compositional and hierarchical systems in a controllable manner. The DFNS/Au dots@Zn-NMOF nanohybrid shows improved catalytic performance in the Knoevenagel condensation reaction, attributed mainly to the cooperative effect stemming from the suitably organized configurations of each component.

Electronic Supplementary Material

Download File(s)
12274_2020_2693_MOESM1_ESM.pdf (6.2 MB)

References

[1]
Wight, A. P.; Davis, M. E. Design and preparation of organic- inorganic hybrid catalysts. Chem. Rev. 2002, 102, 3589-3614.
[2]
Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373-2433.
[3]
Shi, J. L. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013, 113, 2139-2181.
[4]
Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.
[5]
Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2010, 49, 3428-3459.
[6]
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
[7]
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2019, 120, 526-622.
[8]
Zanon, A.; Verpoort, F. Metals@ZIFs: Catalytic applications and size selective catalysis. Coord. Chem. Rev. 2017, 353, 201-222.
[9]
Xu, C. P.; Fang, R. Q.; Luque, R.; Chen, L. Y.; Li, Y. W. Functional metal-organic frameworks for catalytic applications. Coord. Chem. Rev. 2019, 388, 268-292.
[10]
Moon, Y.; Mai, H. D.; Yoo, H. Platinum overgrowth on gold multipod nanoparticles: Investigation of synergistic catalytic effects in a bimetallic nanosystem. ChemNanoMat 2017, 3, 196-203.
[11]
Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal- organic materials. Chem. Soc. Rev. 2011, 40, 291-305.
[12]
Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 2014, 8, 7451-7457.
[13]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.
[14]
Liu, B. T.; Vellingiri, K.; Jo, S. H.; Kumar, P.; Ok, Y. S.; Kim, K. H. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res. 2018, 11, 4441-4467.
[15]
Wang, S. Z.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.
[16]
Zhan, G. W.; Zeng, H. C. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coord. Chem. Rev. 2016, 320-321, 181-192.
[17]
Kuyuldar, S.; Genna, D. T.; Burda, C. On the potential for nanoscale metal-organic frameworks for energy applications. J. Mater. Chem. A 2019, 7, 21545-21576.
[18]
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.
[19]
Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468-5512.
[20]
Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345-14348.
[21]
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
[22]
Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611-8638.
[23]
Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.
[24]
Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819-8860.
[25]
Jiang, J. C.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015, 115, 6966-6997.
[26]
Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614-4630.
[27]
Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.
[28]
Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262-5284.
[29]
Li, B.; Ma, J. G.; Cheng, P. Integration of metal nanoparticles into metal-organic frameworks for composite catalysts: Design and synthetic strategy. Small 2019, 15, 1804849.
[30]
Wang, P.; Zhao, J.; Li, X. B.; Yang, Y.; Yang, Q. H.; Li, C. Assembly of ZIF nanostructures around free Pt nanoparticles: Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. 2013, 49, 3330-3332.
[31]
Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Postassembly transformation of a catalytically active composite material, Pt@ZIF-8, via solvent-assisted linker exchange. Inorg. Chem. 2016, 55, 1361-1363.
[32]
Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340-1348.
[33]
Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.
[34]
Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979-5983.
[35]
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.
[36]
Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267-1269.
[37]
Yuan, B. Z.; Pan, Y. Y.; Li, Y. W.; Yin, B. L.; Jiang, H. F. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem., Int. Ed. 2010, 49, 4054-4058.
[38]
Hermannsdörfer, J.; Friedrich, M.; Miyajima, N.; Albuquerque, R. Q.; Kümmel, S.; Kempe, R. Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11473-11477.
[39]
Khajavi, H.; Stil, H. A.; Kuipers, H. P. C. E.; Gascon, J.; Kapteijn, F. Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal. 2013, 3, 2617-2626.
[40]
Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
[41]
Zhang, W. N.; Zheng, B.; Shi, W. X.; Chen, X. Y.; Xu, Z. L.; Li, S. Z.; Chi, Y. R.; Yang, Y. H.; Lu, J.; Huang, W. et al. Site-selective catalysis of a multifunctional linear molecule: The steric hindrance of metal-organic framework channels. Adv. Mater. 2018, 30, 1800643.
[42]
Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819-5825.
[43]
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237-254.
[44]
Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926-1933.
[45]
Li, Z.; Zeng, H. C. Armored MOFs: Enforcing soft microporous MOF nanocrystals with hard mesoporous silica. J. Am. Chem. Soc. 2014, 136, 5631-5639.
[46]
Jo, C.; Lee, H. J.; Oh, M. One-pot synthesis of silica@coordination polymer core-shell microspheres with controlled shell thickness. Adv. Mater. 2011, 23, 1716-1719.
[47]
Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem., Int. Ed. 2010, 49, 9652-9656.
[48]
Maity, A.; Polshettiwar, V. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing. ChemSusChem 2017, 10, 3866-3913.
[49]
Wang, Y.; Song, H.; Yang, Y. N.; Liu, Y.; Tang, J.; Yu, C. Z. Kinetically controlled dendritic mesoporous silica nanoparticles: From dahlia- to pomegranate-like structures by micelle filling. Chem. Mater. 2018, 30, 5770-5776.
[50]
Byoun, W.; Jung, S.; Tran, N. M.; Yoo, H. Synthesis and application of dendritic fibrous nanosilica/gold hybrid nanomaterials. ChemistryOpen 2018, 7, 349-355.
[51]
Fihri, A.; Cha, D.; Bouhrara, M.; Almana, N.; Polshettiwar, V. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions. ChemSusChem 2012, 5, 85-89.
[52]
Le, X. D.; Dong, Z. P.; Li, X. L.; Zhang, W.; Le, M. D.; Ma, J. T. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal. Commun. 2015, 59, 21-25.
[53]
Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M. KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling. Green Chem. 2016, 18, 5890-5899.
[54]
Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A 2016, 4, 12416-12424.
[55]
Pak, J.; Yoo, H. Facile synthesis of spherical nanoparticles with a silica shell and multiple Au nanodots as the core. J. Mater. Chem. A 2013, 1, 5408-5413.
[56]
Choi, S.; Moon, Y.; Yoo, H. Finely tunable fabrication and catalytic activity of gold multipod nanoparticles. J. Colloid Interface Sci. 2016, 469, 269-276.
[57]
Maity, A.; Belgamwar, R.; Polshettiwar, V. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat. Protoc. 2019, 14, 2177-2204.
[58]
Wang, Y. B.; Du, X.; Liu, Z.; Shi, S. H.; Lv, H. M. Dendritic fibrous nano-particles (DFNPs): Rising stars of mesoporous materials. J. Mater. Chem. A 2019, 7, 5111-5152.
[59]
Bayal, N.; Singh, B.; Singh, R.; Polshettiwar, V. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1). Sci. Rep. 2016, 6, 24888.
[60]
Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685-3689.
[61]
Tran, N. M.; Mai, H. D.; Yoo, H. Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration. Nano Res. 2018, 11, 5890-5901.
[62]
Tran, U. P. N.; Le, K. K. A.; Phan, N. T. S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal. 2011, 1, 120-127.
[63]
Lei, Z. W.; Deng, Y. H.; Wang, C. Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A 2018, 6, 3258-3263.
[64]
Srivastava, S.; Kumar, V.; Gupta, R. A carboxylate-rich metalloligand and its heterometallic coordination polymers: Syntheses, structures, topologies, and heterogeneous catalysis. Cryst. Growth Des. 2016, 16, 2874-2886.
[65]
Kumar, G.; Gupta, R. Cobalt complexes appended with p- and m-carboxylates: Two unique {Co3+-Cd2+} networks and their regioselective and size-selective heterogeneous catalysis. Inorg. Chem. 2012, 51, 5497-5499.
[66]
Kumar, G.; Hussain, F.; Gupta, R. Carbon-sulphur cross coupling reactions catalyzed by nickel-based coordination polymers based on metalloligands. Dalton Trans. 2017, 46, 15023-15031.
[67]
Sorribas, S.; Zornoza, B.; Serra-Crespo, P.; Gascon, J.; Kapteijn, F.; Téllez, C.; Coronas, J. Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al) core-shell spheres. Microp. Mesop. Mater. 2016, 225, 116-121.
[68]
Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun. 2012, 48, 9388-9390.
[69]
Ke, F.; Qiu, L. G.; Zhu, J. F. Fe3O4@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction. Nanoscale 2014, 6, 1596-1601.
[70]
Wang, K.; Ren, H. L.; Li, N.; Tan, X. Y.; Dang, F. Q. Ratiometric fluorescence sensor based on cholesterol oxidase-functionalized mesoporous silica nanoparticle@ZIF-8 core-shell nanocomposites for detection of cholesterol. Talanta 2018, 188, 708-713.
[71]
Qu, Q. S.; Xuan, H.; Zhang, K. H.; Chen, X. M.; Ding, Y.; Feng, S. J.; Xu, Q. Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J. Chromatogr. A 2017, 1505, 63-68.
[72]
Vermoortele, F.; Bueken, B.; Le Bars, G.; van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; van Speybroeck, V. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465-11468.
[73]
Zhang, P. F.; Xiao, Y.; Sun, H.; Dai, X. P.; Zhang, X.; Su, H. X.; Qin, Y. C.; Gao, D. W.; Jin, A. X.; Wang, H. et al. Microwave-assisted, Ni-induced fabrication of hollow ZIF-8 nanoframes for the Knoevenagel reaction. Cryst. Growth Des. 2018, 18, 3841-3850.
[74]
Schmidbaur, H. Proof of concept for hydrogen bonding to gold, Au⋅⋅⋅H-X. Angew. Chem., Int. Ed. 2019, 58, 5806-5809.
Nano Research
Pages 775-784
Cite this article:
Tran NM, Jung S, Yoo H. "Nanospace engineering" by the growth of nano metal-organic framework on dendritic fibrous nanosilica (DFNS) and DFNS/ gold hybrids. Nano Research, 2020, 13(3): 775-784. https://doi.org/10.1007/s12274-020-2693-0
Topics:

845

Views

7

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 03 December 2019
Revised: 29 January 2020
Accepted: 30 January 2020
Published: 28 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return