AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Synergy between thermal and nonthermal effects in plasmonic photocatalysis

Xueqian Li1,Henry O. Everitt2,3( )Jie Liu1( )
Department of Chemistry, Duke University, Durham, NC 27708, USA
U.S. Army Combat Capabilities Development Command, Aviation & Missile Center, Redstone Arsenal, AL 35898, USA
Department of Physics, Duke University, Durham, NC 27708, USA

Present address: Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA

Show Author Information

Graphical Abstract

Abstract

Plasmonic photocatalysis represents the synergetic union of two active fields of research: plasmonic effects in illuminated metallic nanoparticles and catalytic effects in tailored metallic nanoparticles. Traditionally, metallic nanoparticles that excel for one application are limited for the other, but recent developments have shown that desirable catalytic behaviors, such as reduced activation barriers and improved product selectivity, derive from nonthermal behaviors uniquely produced by this synergy. After examining such findings, this review will address a specific debate that has recently surfaced: what is the relative degree of contributions of thermal and nonthermal effects in plasmonic photocatalysis? We demonstrate the importance of correctly accounting for thermal effects before characterizing nonthermal contributions. We show that another synergy occurs: these desirable nonthermal behaviors have a temperature dependence, and the resulting temperature-dependent reaction rates far exceed what can be explained from purely thermal effects alone. Thus, the synergy of plasmonic photocatalysis offers an exciting new contribution to the quest for efficient, selective, sustainable methods for chemical synthesis and energy conversion.

References

[1]
Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[2]
Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898-911.
[3]
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
[4]
Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702-704.
[5]
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.
[6]
Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656-665.
[7]
Sarina, S.; Jaatinen, E.; Xiao, Q.; Huang, Y. M.; Christopher, P.; Zhao, J. C.; Zhu, H. Y. Photon energy threshold in direct photocatalysis with metal nanoparticles: Key evidence from the action spectrum of the reaction. J. Phys. Chem. Lett. 2017, 8, 2526-2534.
[8]
Zhao, J.; Nguyen, S. C.; Ye, R.; Ye, B. H.; Weller, H.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 2017, 3, 482-488.
[9]
Pakizeh, T. Optical absorption of nanoparticles described by an electronic local interband transition. J. Opt. 2013, 15, 025001.
[10]
Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898-3907.
[11]
Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-576.
[12]
Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116-128.
[13]
Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.
[14]
Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.
[15]
Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044-1050.
[16]
Yang, J. H.; Guo, Y. Z.; Lu, W. Z.; Jiang, R. B.; Wang, J. F. Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv. Mater. 2018, 30, 1802227.
[17]
Sutter, P.; Li, Y.; Argyropoulos, C.; Sutter, E. In situ electron microscopy of plasmon-mediated nanocrystal synthesis. J. Am. Chem. Soc. 2017, 139, 6771-6776.
[18]
Cao, L. Y.; Barsic, D. N.; Guichard, A. R.; Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 2007, 7, 3523-3527.
[19]
Robert, H. M. L.; Kundrat, F.; Bermúdez-Ureña, E.; Rigneault, H.; Monneret, S.; Quidant, R.; Polleux, J.; Baffou, G. Light-assisted solvothermal chemistry using plasmonic nanoparticles. ACS Omega 2016, 1, 2-8.
[20]
Kamarudheen, R.; Castellanos, G. W.; Kamp, L. P. J.; Clercx, H. J. H.; Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano 2018, 12, 8447-8455.
[21]
Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-38.
[22]
Ahmad, M.; Anguita, J. V.; Stolojan, V.; Carey, J. D.; Silva, S. R. Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: High-quality carbon nanotube synthesis at low substrate temperatures. ACS Appl. Mater. Interfaces 2013, 5, 3861-3866.
[23]
Qiu, J. J.; Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 2014, 118, 20735-20749.
[24]
Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 2009, 9, 1139-1146.
[25]
Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887-6893.
[26]
Wang, S. S.; Hu, W. C.; Liu, F. F.; Xu, Q. Y.; Wang, C. Insights into direct plasmon-activated eletrocatalysis on gold nanostar via efficient photothermal effect and reduced activation energy. Electrochim. Acta 2019, 301, 359-365.
[27]
Zhou, Y.; Doronkin, D. E.; Zhao, Z. Y.; Plessow, P. N.; Jelic, J.; Detlefs, B.; Pruessmann, T.; Studt, F.; Grunwaldt, J. D. Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, resonant XES, and DRIFTS. ACS Catal. 2018, 12, 11398-11406.
[28]
Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467-472.
[29]
Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.
[30]
Mukherjee, S.; Zhou, L. N.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64-67.
[31]
Wu, B. H.; Lee, J.; Mubeen, S.; Jun, Y. S.; Stucky, G. D.; Moskovits, M. Plasmon-mediated photocatalytic decomposition of formic acid on palladium nanostructures. Adv. Opt. Mater. 2016, 4, 1041-1046.
[32]
Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis; John Wiley & Sons, Inc.: New York, 2014.
[33]
Tana, T.; Guo, X. W.; Xiao, Q.; Huang, Y. M.; Sarina, S.; Christopher, P.; Jia, J. F.; Wu, H. S.; Zhu, H. Y. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chem. Commun. (Camb.) 2016, 52, 11567-11570.
[34]
Chavez, S.; Rao, V. G.; Linic, S. Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. Faraday Discuss. 2019, 214, 441-453.
[35]
Peng, T. H.; Miao, J. J.; Gao, Z. S.; Zhang, L. J.; Gao, Y.; Fan, C. H.; Li, D. Reactivating catalytic surface: Insights into the role of hot holes in plasmonic catalysis. Small 2018, 14, e1703510.
[36]
Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 2006, 106, 4301-4320.
[37]
Wang, J.; Ando, R. A.; Camargo, P. H. C. Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminothiophenol on au nanoparticles by charge transfer from UV-excited TiO2. Angew. Chem., Int. Ed. 2015, 54, 6909-6912.
[38]
DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 2018, 18, 2545-2550.
[39]
Sivan, Y.; Chu, S. W. Nonlinear plasmonics at high temperatures. Nanophotonics 2017, 6, 317-328.
[40]
Sivan, Y.; Un, I. W.; Dubi, Y. Assistance of metal nanoparticles in photocatalysis-nothing more than a classical heat source. Faraday Discuss. 2019, 214, 215-233.
[41]
Boltersdorf, J.; Forcherio, G. T.; McClure, J. P.; Baker, D. R.; Leff, A. C.; Lundgren, C. Visible light-promoted plasmon resonance to induce “hot” hole transfer and photothermal conversion for catalytic oxidation. J. Phys. Chem. C 2018, 122, 28934-28948.
[42]
Christopher, P.; Linic, S. Shape- and size-specific chemistry of ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2010, 2, 78-83.
[43]
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893-897.
[44]
Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365-384.
[45]
Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 2017, 13, 1602583.
[46]
Yang, Q.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed .2016, 55, 3685-3689.
[47]
Robatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L. N.; Nordlander, P.; Halas, N. J. Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci. Adv. 2019, 5, eaav5340.
[48]
Cui, J. B.; Li, Y. J.; Liu, L.; Chen, L.; Xu, J.; Ma, J. W.; Fang, G.; Zhu, E. B.; Wu, H.; Zhao, L. X. et al. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 2015, 15, 6295-6301.
[49]
Lee, J. E.; Mota, F. M.; Choi, C. H.; Lu, Y. R.; Boppella, R.; Dong, C. L.; Liu, R. S.; Kim, D. H. Plasmon-enhanced electrocatalytic properties of rationally designed hybrid nanostructures at a catalytic interface. Adv. Mater. 2019, 6, 1801144.
[50]
Lim, D. K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075-4079.
[51]
Kumar, D.; Lee, A.; Lee, T.; Lim, M.; Lim, D. K. Ultrafast and efficient transport of hot plasmonic electrons by graphene for Pt free, highly efficient visible-light responsive photocatalyst. Nano Lett. 2016, 16, 1760-1767.
[52]
Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964-17972.
[53]
Salmon-Gamboa, J. U.; Romero-Gómez, M.; Roth, D. J.; Barber, M. J.; Wang, P.; Fairclough, S. M.; Nasir, M. E.; Krasavin, A. V.; Dickson, W.; Zayats, A. V. Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures. Faraday Discuss. 2019, 214, 287-397.
[54]
Zhao, H. L.; Zheng, X. Y.; Feng, X. H.; Li, Y. CO2 Reduction by plasmonic au nanoparticle-decorated TiO2 photocatalyst with an ultrathin Al2O3 interlayer. J. Phys. Chem. C 2018, 122, 18949-18956.
[55]
Choi, H.; Chen, W. T.; Kamat, P. V. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 2012, 6, 4418-4427.
[56]
Tahir, M.; Tahir, B.; Saidina Amin, N. A.; Zakaria, Z. Y. Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/ TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2 Util. 2017, 18, 250-260.
[57]
Kim, C.; Suh, B. L.; Yun, H.; Kim, J.; Lee, H. Surface plasmon aided ethanol dehydrogenation using Ag-Ni binary nanoparticles. ACS Catal. 2017, 7, 2294-2302.
[58]
Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.
[59]
Tada, S.; Watanabe, F.; Kiyota, K.; Shimoda, N.; Hayashi, R.; Takahashi, M.; Nariyuki, A.; Igarashi, A.; Satokawa, S. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal. 2017, 351, 107-118.
[60]
Rani, S.; Bao, N. Z.; Roy, S. C. Solar spectrum photocatalytic conversion of CO2 and water vapor into hydrocarbons using TiO2 nanoparticle membranes. Appl. Surf. Sci. 2014, 289, 203-208.
[61]
Xu, Z. H.; Kibria, M. G.; AlOtaibi, B.; Duchesne, P. N.; Besteiro, L. V.; Gao, Y.; Zhang, Q. Z.; Mi, Z. T.; Zhang, P.; Govorov, A. O. et al. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect? Appl. Catal. B Environ. 2018, 221, 77-85.
[62]
Stanley, J. N. G.;García-García, I.; Perfrement, T.; Lovell, E. C.; Schmidt, T. W.; Scott, J.; Amal, R. Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chem. Eng. Sci. 2019, 194, 94-104.
[63]
Swearer, D. F.; Leary, R. K.; Newell, R.; Yazdi, S.; Robatjazi, H.; Zhang, Y.; Renard, D.; Nordlander, P.; Midgley, P. A.; Halas, N. J. et al. Transition-metal decorated aluminum nanocrystals. ACS Nano 2017, 11, 10281-10288.
[64]
Swearer, D. F.; Zhao, H. Q.; Zhou, L. N.; Zhang, C.; Robatjazi, H.; Martirez, J. M. P.; Krauter, C. M.; Yazdi, S.; McClain, M. J.; Ringe, E. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. USA. 2016, 113, 8916-8920.
[65]
Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69-72.
[66]
Keller, E. L.; Kang, H.; Haynes, C. L.; Frontiera, R. R. Effect of silica supports on plasmonic heating of molecular adsorbates as measured by ultrafast surface-enhanced Raman thermometry. ACS Appl. Mater. Interfaces 2018, 10, 40577-40584.
[67]
Gutierrez, Y.; Ortiz, D.; Sanz, J. M.; Saiz, J. M.; Gonzalez, F.; Everitt, H. O.; Moreno, F. How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. Opt. Express 2016, 24, 20621-20631.
[68]
Mankidy, B. D.; Joseph, B.; Gupta, V. K. Photo-conversion of CO2 using titanium dioxide: Enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 2013, 24, 405402.
[69]
Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521-526.
[70]
Lin, C. F.; Ikeda, K.; Shiota, Y.; Yoshizawa, K.; Kumagai, T. Real-space observation of far- and near-field-induced photolysis of molecular oxygen on an Ag(110) surface by visible light. J. Chem. Phys. 2019, 151, 144705.
[71]
Seemala, B.; Therrien, A. J.; Lou, M. H.; Li, K.; Finzel, J. P.; Qi, J.; Nordlander, P.; Christopher, P. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields? ACS Energy Lett. 2019, 4, 1803-1809.
[72]
Pensa, E.; Gargiulo, J.; Lauri, A.; Schlücker, S.; Cortés, E.; Maier, S. A. Spectral screening of the energy of hot holes over a particle plasmon resonance. Nano Lett. 2019, 19, 1867-1874.
[73]
Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 2019, 10, 2671.
[74]
Tesema, T. E.; Kafle, B.; Habteyes, T. G. Plasmon-driven reaction mechanisms: Hot electron transfer versus plasmon-pumped adsorbate excitation. J. Phys. Chem. C 2019, 123, 8469-8483.
[75]
Yu, Y.; Sundaresan, V.; Willets, K. A. Hot carriers versus thermal effects: Resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 2018, 122, 5040-5048.
[76]
Huang, H.; Zhang, L.; Lv, Z. H.; Long, R.; Zhang, C.; Lin, Y.; Wei, K. C.; Wang, C. M.; Chen, L.; Li, Z. Y. et al. Unraveling surface plasmon decay in core-shell nanostructures toward broadband light-driven catalytic organic synthesis. J. Am. Chem. Soc. 2016, 138, 6822-6828.
[77]
Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 2018, 9, 4658.
[78]
Yu, Y.; Wijesekara, K. D.; Xi, X. X.; Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 2019, 13, 3629-3637.
[79]
Li, X. Q.; Zhang, X.; Everitt, H. O.; Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 2019, 19, 1706-1711.
[80]
Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.
[81]
Li, X. Q.; Everitt, H. O.; Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 2019, 12, 1906-1911.
[82]
Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714-1723.
[83]
Song, H.; Meng, X. G.; Wang, Z. J.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. H. Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO2 catalysts. ACS Catal. 2018, 8, 7556-7565.
[84]
Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710-3717.
[85]
Szczerbinski, J.; Gyr, L.; Kaeslin, J.; Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 2018, 18, 6740-6749.
[86]
Pozzi, E. A.; Zrimsek, A. B.; Lethiec, C. M.; Schatz, G. C.; Hersam, M. C.; Van Duyne, R. P. Evaluating single-molecule stokes and anti-stokes SERS for nanoscale thermometry. J. Phys. Chem. C 2015, 119, 21116-21124.
[87]
Kumari, G.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 2018, 12, 8330-8340.
[88]
Mahmoud, M. A. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating. Phys. Chem. Chem. Phys. 2017, 19, 32016-32023.
[89]
Simoncelli, S.; Pensa, E. L.; Brick, T.; Gargiulo, J.; Lauri, A.; Cambiasso, J.; Li, Y.; Maier, S. A.; Cortés, E. Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discuss. 2019, 214, 73-87.
[90]
Yu, S.; Wilson, A. J.; Kumari, G.; Zhang, X.Q.; Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2017, 2, 2058-2070.
[91]
Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 2009, 9, 4417-4423.
[92]
Li, H. G.; Rivallan, M.; Thibault-Starzyk, F.; Travert, A.; Meunier, F. C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Phys. Chem. Chem. Phys. 2013, 15, 7321-7327.
[93]
Brites, C. D.; Lima, P. P.; Silva, N. J.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799-4829.
[94]
Brites, C. D.; Lima, P. P.; Silva, N. J.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 2010, 22, 4499-4504.
[95]
Menges, F.; Mensch, P.; Schmid, H.; Riel, H.; Stemmer, A.; Gotsmann, B. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 2016, 7, 10874.
[96]
Zeng, Z. C.; Wang, H.; Johns, P.; Hartland, G. V.; Schultz, Z. D. Photothermal microscopy of coupled nanostructures and the impact of nanoscale heating in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2017, 121, 11623-11631.
[97]
Xie, X.; Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 2016, 109, 183104.
[98]
Kim, Y.; Dumett Torres, D.; Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett. 2016, 16, 3399-3407.
[99]
Hindasageri, V.; Vedula, R. P.; Prabhu, S. V. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient. Rev. Sci. Instrum. 2013, 84, 024902.
[100]
Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.
[101]
Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; González, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606-19615.
[102]
Avanesian, T.; Gusmão, G. S.; Christopher, P. Mechanism of CO2 reduction by H2 on Ru(0001) and general selectivity descriptors for late-transition metal catalysts. J. Catal. 2016, 343, 86-96.
[103]
Solymosi, F.; Erdöhelyi, A.; Bánsági, T. Methanation of CO2 on supported rhodium catalyst. J. Catal. 1981, 68, 371-382.
[104]
Sexton, B. A.; Somorjai, G. A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions. J. Catal. 1977, 46, 167-189.
[105]
Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076-3084.
[106]
Karelovic, A.; Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 2013, 301, 141-153.
[107]
Jacquemin, M.; Beuls, A.; Ruiz, P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catal. Today 2010, 157, 462-466.
[108]
Williams, K. J.; Boffa, A. B.; Salmeron, M.; Bell, A. T.; Somorjai, G. A. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal. Lett. 1991, 9, 415-426.
[109]
Henderson, M. A.; Worley, S. D. An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. J. Phys. Chem. 1985, 89, 1417-1423.
[110]
Goodman, D. W.; Peebles, D. E.; White, J. M. CO2 dissociation on rhodium: Measurement of the specific rates on Rh(111). Surf. Sci. 1984, 140, L239-L243.
[111]
Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett. 2014, 14, 5405-5412.
[112]
Marimuthu, A.; Zhang, J. W.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590-1593.
[113]
Zhang, X.; Li, P.; Barreda, Á.; Gutiérrez, Y.; González, F.; Moreno, F.; Everitt, H. O.; Liu, J. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 2016, 1, 75-80.
[114]
Zhang, H.; Govorov, A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C 2014, 118, 7606-7614.
[115]
Gutiérrez, Y.; Ortiz, D.; Saiz, J. M.; González, F.; Everitt, H. O.; Moreno, F. The UV plasmonic behavior of distorted rhodium nanocubes. Nanomaterials (Basel) 2017, 7, 425.
[116]
Wang, S. S.; Ding, T. Photothermal-assisted optical stretching of gold nanoparticles. ACS Nano 2019, 13, 32-37.
[117]
Olsen, T.; Schiøtz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 2009, 103, 238301.
Nano Research
Pages 1268-1280
Cite this article:
Li X, Everitt HO, Liu J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Research, 2020, 13(5): 1268-1280. https://doi.org/10.1007/s12274-020-2694-z
Topics:

859

Views

51

Crossref

N/A

Web of Science

50

Scopus

1

CSCD

Altmetrics

Received: 08 November 2019
Revised: 31 January 2020
Accepted: 01 February 2020
Published: 23 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return