AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-dimensional fuzzy graphene ultra-microelectrodes for sub-cellular electrical recordings

Sahil K. Rastogi1Jacqueline Bliley1Laura Matino2,3Raghav Garg4Francesca Santoro2Adam W. Feinberg1,4Tzahi Cohen-Karni1,4( )
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Show Author Information

Graphical Abstract

Abstract

Microelectrode arrays (MEAs) have enabled investigation of cellular networks at sub-millisecond temporal resolution. However, current MEAs are limited by the large electrode footprint since reducing the electrode’s geometric area to sub-cellular dimensions leads to a significant increase in impedance thus affecting its recording capabilities. We report a breakthrough ultra-microelectrodes platform by leveraging the outstanding surface-to-volume ratio of nanowire-templated out-of-plane synthesized three-dimensional fuzzy graphene (NT-3DFG). The enormous surface area of NT-3DFG leads to 140-fold reduction in electrode impedance compared to bare Au microelectrodes, thus enabling scaling down the geometric size by 625-fold to ca. 2 µm × 2 µm. The out-of-plane morphology of NT-3DFG leads to a tight seal with the cell membrane thus enabling recording of electrical signals with high signal-to-noise ratio (SNR) of > 6. This work highlights the possibility to push the limits of the conventional MEA technology to enable electrophysiological investigation at sub-cellular level without the need of any surface coatings. This presented approach would greatly impact our basic understanding of signal transduction within a single cell as well as complex cellular assemblies.

Electronic Supplementary Material

Download File(s)
12274_2020_2695_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Thomas, C. A.Jr; Springer, P. A.; Loeb, G. E.; Berwald-Netter, Y.; Okun, L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 1972, 74, 61-66.
[2]
Spira, M. E.; Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 2013, 8, 83-94.
[3]
Rastogi, S. K.; Kalmykov, A.; Johnson, N.; Cohen-Karni, T. Bioelectronics with nanocarbons. J. Mater. Chem. B 2018, 6, 7159-7178.
[4]
Deku, F.; Ghazavi, A.; Cogan, S. F. Neural interfaces based on amorphous silicon carbide ultramicroelectrode arrays. Bioelectron. Med. 2018, 1, 185-200.
[5]
Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065-1073.
[6]
Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 2016, 13, 875-882.
[7]
Luan, L.; Wei, X. L.; Zhao, Z. T.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S. Q.; Kazmi, S.; Fowler, R. A.; Holloway, S. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 2017, 3, e1601966.
[8]
Marblestone, A. H.; Zamft, B. M.; Maguire, Y. G.; Shapiro, M. G.; Cybulski, T. R.; Glaser, J. I.; Amodei, D.; Stranges, P. B.; Kalhor, R.; Dalrymple, D. A. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 2013, 7, 137.
[9]
Maher, M.; Pine, J.; Wright, J.; Tai, Y. C. The neurochip: A new multielectrode device for stimulating and recording from cultured neurons. J. Neurosci. Methods 1999, 87, 45-56.
[10]
Gabay, T.; Ben-David, M.; Kalifa, I.; Sorkin, R.; Ze’ev, R. A.; Ben-Jacob, E.; Hanein, Y. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 2007, 18, 035201.
[11]
Meyer, R. D.; Cogan, S. F.; Nguyen, T. H.; Rauh, R. D. Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 2-11.
[12]
Cui, X. Y.; Lee, V. A.; Raphael, Y.; Wiler, J. A.; Hetke, J. F.; Anderson, D. J.; Martin, D. C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 2001, 56, 261-272.
[13]
Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930-939.
[14]
Cogan, S. F.; Guzelian, A. A.; Agnew, W. F.; Yuen, T. G.; McCreery, D. B. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods 2004, 137, 141-150.
[15]
Lu, Y. C.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 2016, 6, 33526.
[16]
Rastogi, S. K.; Bliley, J.; Shiwarski, D. J.; Raghavan, G.; Feinberg, A. W.; Cohen-Karni, T. Graphene microelectrode arrays for electrical and optical measurements of human stem cell-derived cardiomyocytes. Cell. Mol. Bioeng. 2018, 11, 407-418.
[17]
Garg, R.; Rastogi, S. K.; Lamparski, M.; de la Barrera, S. C.; Pace, G. T.; Nuhfer, N. T.; Hunt, B. M.; Meunier, V.; Cohen-Karni, T. Nanowire-mesh-templated growth of out-of-plane three-dimensional fuzzy graphene. ACS Nano 2017, 11, 6301-6311.
[18]
Chen, G. K.; Gulbranson, D. R.; Hou, Z. G.; Bolin, J. M.; Ruotti, V.; Probasco, M. D.; Smuga-Otto, K.; Howden, S. E.; Diol, N. R.; Propson, N. E. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 2011, 8, 424-429.
[19]
Lian, X. J.; Zhang, J. H.; Azarin, S. M.; Zhu, K. X.; Hazeltine, L. B.; Bao, X. P.; Hsiao, C.; Kamp, T. J.; Palecek, S. P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 2013, 8, 162-175.
[20]
Burridge, P. W.; Matsa, E.; Shukla, P.; Lin, Z. C.; Churko, J. M.; Ebert, A. D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N. M. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014, 11, 855-860.
[21]
Tohyama, S.; Hattori, F.; Sano, M.; Hishiki, T.; Nagahata, Y.; Matsuura, T.; Hashimoto, H.; Suzuki, T.; Yamashita, H.; Satoh, Y. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013, 12, 127-137.
[22]
Rastogi, S. K.; Raghavan, G.; Yang, G.; Cohen-Karni, T. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett. 2017, 17, 3297-3301.
[23]
Kovács, M.; Tóth, J.; Hetényi, C.; Málnási-Csizmadia, A.; Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 2004, 279, 35557-35563.
[24]
Li, X.; Matino, L.; Zhang, W.; Klausen, L.; McGuire, A. F.; Lubrano, C.; Zhao, W. T.; Santoro, F.; Cui, B. X. A nanostructure platform for live-cell manipulation of membrane curvature. Nat. Protoc. 2019, 14, 1772-1802.
[25]
Santoro, F.; Zhao, W. T.; Joubert, L. M.; Duan, L. T.; Schnitker, J.; van de Burgt, Y.; Lou, H. Y.; Liu, B. F.; Salleo, A.; Cui, L. F. et al. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 2017, 11, 8320-8328.
[26]
Smith, S. W. The Scientist and Engineer's Guide to Digital Signal Processing; California Technical Pub: California, 1997.
[27]
Noda, T.; Noda, Y.; Chen, P. C.; Haruta, M.; Sasagawa, K.; Tokuda, T.; Wu, C. Y.; Ohta, J. Electrochemical evaluation of geometrical effect and three-dimensionalized effect of iridium oxide electrodes used for retinal stimulation. Sens. Mater. 2018, 30, 213-224.
[28]
Weiland, J. D.; Anderson, D. J.; Humayun, M. S. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 2002, 49, 1574-1579.
[29]
Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275-309.
[30]
Rastogi, S. K.; Cohen-Karni, T. Nanoelectronics for neuroscience. In Encyclopedia of Biomedical Engineering; Narayan, R., Ed.; Elsevier: Amsterdam, 2019.
[31]
Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 2014, 5, 5259.
[32]
Ganji, M.; Kaestner, E.; Hermiz, J.; Rogers, N.; Tanaka, A.; Cleary, D.; Lee, S. H.; Snider, J.; Halgren, M.; Cosgrove, G. R. et al. Development and translation of PEDOT: PSS microelectrodes for intraoperative monitoring. Adv. Funct. Mater. 2018, 28, 1700232.
[33]
Navarrete, E. G.; Liang, P.; Lan, F.; Sanchez-Freire, V.; Simmons, C.; Gong, T. Y.; Sharma, A.; Burridge, P. W.; Patlolla, B.; Lee, A. S. et al. Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 2013, 128, S3-S13.
[34]
Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510-517.
[35]
Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 2015, 14, 1286-1292.
[36]
Viswam, V.; Obien, M. E. J.; Franke, F.; Frey, U.; Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci. 2019, 13, 385.
[37]
Perry, S. W.; Norman, J. P.; Barbieri, J.; Brown, E. B.; Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 2011, 50, 98-115.
[38]
Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 2007, 87, 99-163.
[39]
Karbowski, M.; Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 2003, 10, 870-880.
[40]
Hai, A.; Dormann, A.; Shappir, J.; Yitzchaik, S.; Bartic, C.; Borghs, G.; Langedijk, J. P. M.; Spira, M. E. Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 2009, 6, 1153-1165.
[41]
Dipalo, M.; McGuire, A. F.; Lou, H. Y.; Caprettini, V.; Melle, G.; Bruno, G.; Lubrano, C.; Matino, L.; Li, X.; De Angelis, F. et al. Cells adhering to 3D vertical nanostructures: Cell membrane reshaping without stable internalization. Nano Lett. 2018, 18, 6100-6105.
[42]
Clements, M.; Thomas, N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol. Sci. 2014, 140, 445-461.
[43]
Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 2012, 12, 2639-2644.
[44]
Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010, 10, 1098-1102.
Nano Research
Pages 1444-1452
Cite this article:
Rastogi SK, Bliley J, Matino L, et al. Three-dimensional fuzzy graphene ultra-microelectrodes for sub-cellular electrical recordings. Nano Research, 2020, 13(5): 1444-1452. https://doi.org/10.1007/s12274-020-2695-y
Topics:

777

Views

28

Crossref

N/A

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 15 December 2019
Revised: 04 January 2020
Accepted: 03 February 2020
Published: 31 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return