AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals

Elvira Fantechi1( )Claudia Innocenti2,3Giovanni Bertoni4,5Claudio Sangregorio2,3Francesco Pineider1
INSTM and Dept. of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
ICCOM-CNR, Institute for the Chemistry of OrganoMetallic Compounds, Sesto Fiorentino 50019, Italy
INSTM and Dept. of Chemistry "U. Schiff" , University of Florence, Sesto Fiorentino 50019, Italy
IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parma 43124, Italy
CNR-Istituto Nanoscienze, Modena 41125, Italy
Show Author Information

Graphical Abstract

Abstract

The rational design of complex nanostructures is of paramount importance to gain control over their chemical and physical properties. Recently, magnetic-plasmonic heterostructured nanocrystals have been recognized as key players in nanomedicine as multifunctional therapeutic-diagnostic tools and in catalysis. Here we show how the properties of gold-iron oxide heterostructured nanocrystals can be tuned by chemical doping of the magnetic subunit. The divalent cations in the iron oxide were substituted with cobalt and manganese to obtain a general formula Au-MFe2O4 (M = Fe, Co, Mn). Magnetic properties of the heterostructures could be tuned, while maintaining well-defined plasmon resonance signatures, confirming the dual magnetic-plasmonic functional capability of these nanostructures.

Electronic Supplementary Material

Download File(s)
12274_2020_2696_MOESM1_ESM.pdf (2.4 MB)

References

[1]
Scarfiello, R.; Nobile, C.; Cozzoli, P. D. Colloidal magnetic heterostructured nanocrystals with asymmetric topologies: Seeded-growth synthetic routes and formation mechanisms. Front. Mater. 2016, 3, 56.
[2]
Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195-1208.
[3]
De La Vega, J. C.; Häfeli, U. O. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol. Imaging 2015, 10, 81-95.
[4]
Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410-10488.
[5]
Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015, 115, 10637-10689.
[6]
Leung, K. C. F.; Xuan, S. H.; Zhu, X. M.; Wang, D. W.; Chak, C. P.; Lee, S. F.; Ho, W. K. W.; Chung, B. C. T. Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev. 2012, 41, 1911-1928.
[7]
Nguyen, T. T.; Mammeri, F.; Ammar, S. Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: A review. Nanomaterials 2018, 8, 149.
[8]
Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.
[9]
Choi, S. H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573-15580.
[10]
Umut, E.; Pineider, F.; Arosio, P.; Sangregorio, C.; Corti, M.; Tabak, F.; Lascialfari, A.; Ghigna, P. Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J. Magn. Magn. Mater. 2012, 324, 2373-2379.
[11]
Efremova, M. V.; Naumenko, V. A.; Spasova, M.; Garanina, A. S.; Abakumov, M. A.; Blokhina, A. D.; Melnikov, P. A.; Prelovskaya, A. O.; Heidelmann, M.; Li, Z. A. et al. Magnetite-gold nanohybrids as ideal all-in-one platforms for theranostics. Sci. Rep. 2018, 8, 1-19.
[12]
Xu, C. J.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. H. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem., Int. Ed. 2007, 47, 173-176.
[13]
Kim, D.; Yu, M. K.; Lee, T. S.; Park, J. J.; Jeong, Y. Y.; Jon, S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 2011, 22, 155101.
[14]
Zhu, J.; Lu, Y. J.; Li, Y. G.; Jiang, J.; Cheng, L.; Liu, Z.; Guo, L.; Pan, Y.; Gu, H. W. Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale 2014, 6, 199-202.
[15]
Espinosa, A.; Bugnet, M.; Radtke, G.; Neveu, S.; Botton, G. A.; Wilhelm, C.; Abou-Hassan, A. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale 2015, 7, 18872-18877.
[16]
Guardia, P.; Nitti, S.; Materia, M. E.; Pugliese, G.; Yaacoub, N.; Greneche, J. M.; Lefevre, C.; Manna, L.; Pellegrino, T. Gold-iron oxide dimers for magnetic hyperthermia: The key role of chloride ions in the synthesis to boost the heating efficiency. J. Mater. Chem. B 2017, 5, 4587-4594.
[17]
Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216-4217.
[18]
Kakwere, H.; Materia, M. E.; Curcio, A.; Prato, M.; Sathya, A.; Nitti, S.; Pellegrino, T. Dually responsive gold-iron oxide heterodimers: Merging stimuli-responsive surface properties with intrinsic inorganic material features. Nanoscale 2018, 10, 3930-3944.
[19]
Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S.H.; Dai, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun. 2008, 4357-4359.
[20]
Najafishirtari, S.; Guardia, P.; Scarpellini, A.; Prato, M.; Marras, S.; Manna, L.; Colombo, M. The effect of Au domain size on the CO oxidation catalytic activity of colloidal Au-FeOx dumbbell-like heterodimers. J. Catal. 2016, 338, 115-123.
[21]
Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 2010, 22, 3277-3282.
[22]
Lee, Y.; Garcia, M. A.; Frey Huls, N. A.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 1271-1274.
[23]
Lin, F. H.; Doong, R. A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591-6598.
[24]
Strickler, A. L.; Escudero-Escribano, M.; Jaramillo, T. F. Core-shell Au@metal-oxide nanoparticle electrocatalysts for enhanced oxygen evolution. Nano Lett. 2017, 17, 6040-6046.
[25]
Wei, Q.; Xiang, Z.; He, J.; Wang, G. L.; Li, H.; Qian, Z. Y.; Yang, M. H. Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosens. Bioelectron. 2010, 26, 627-631.
[26]
Li, S. S.; Zhou, W. Y.; Jiang, M.; Guo, Z.; Liu, J. H.; Zhang, L. Z.; Huang, X. J. Surface Fe(II)/Fe(III) cycle promoted ultra-highly sensitive electrochemical sensing of arsenic(III) with dumbbell-like Au/Fe3O4 nanoparticles. Anal. Chem. 2018, 90, 4569-4577.
[27]
Shen, J. C.; Yang, Y.; Zhang, Y.; Yang, H.; Zhou, Z. G.; Yang, S. P. Functionalized Au-Fe3O4 nanocomposites as a magnetic and colorimetric bimodal sensor for melamine. Sens. Actuators B Chem. 2016, 226, 512-517.
[28]
Zhang, Y.; Zhao, Y.; Yang, Y.; Shen, J. C.; Yang, H.; Zhou, Z. G.; Yang, S. P. A bifunctional sensor based on Au-Fe3O4 nanoparticle for the detection of Cd2+. Sens. Actuators B Chem. 2015, 220, 622-626.
[29]
Reguera, J.; Jiménez De Aberasturi, D.; Winckelmans, N.; Langer, J.; Bals, S.; Liz-Marzán, L. M. Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection. Faraday Discuss. 2016, 191, 47-59.
[30]
Xie, J.; Zhang, F.; Aronova, M.; Zhu, L.; Lin, X.; Quan, Q. M.; Liu, G.; Zhang, G. F.; Choi, K. Y.; Kim, K. et al. Manipulating the power of an additional phase: A flower-like Au-Fe3O4 optical nanosensor for imaging protease expressions in vivo. ACS Nano 2011, 5, 3043-3051.
[31]
Carta, D.; Casula, M. F.; Falqui, A.; Loche, D.; Mountjoy, G.; Sangregorio, C.; Corrias, A. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). J. Phys. Chem. C 2009, 113, 8606-8615.
[32]
Chen, R.; Christiansen, M. G.; Anikeeva, P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 2013, 7, 8990-9000.
[33]
Fantechi, E.; Campo, G.; Carta, D.; Corrias, A.; de Julián Fernández, C.; Gatteschi, D.; Innocenti, C.; Pineider, F.; Rugi, F.; Sangregorio, C. Exploring the effect of Co doping in fine maghemite nanoparticles. J. Phys. Chem. C 2012, 116, 8261-8270.
[34]
Fantechi, E.; Innocenti, C.; Albino, M.; Lottini, E.; Sangregorio, C. Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 2015, 380, 365-371.
[35]
Schieber, M. M. Iron oxides and their compounds. In Experimental Magnetochemistry: Nonmetallic Magnetic Materials; Wohlfarth, E. P., Ed.; North-Holland Publishing Company: Amsterdam, 1967; p 158.
[36]
Carta, D.; Corrias, A.; Falqui, A.; Brescia, R.; Fantechi, E.; Pineider, F.; Sangregorio, C. EDS, HRTEM/STEM, and X-ray absorption spectroscopy studies of Co-substituted maghemite nanoparticles. J. Phys. Chem. C 2013, 117, 9496-9506.
[37]
Zhou, S. F.; Han, X. J.; Fan, H. L.; Liu, Y. Q. Electrochemical sensing toward trace As(III) based on mesoporous MnFe2O4/Au hybrid nanospheres modified glass carbon electrode. Sensors 2016, 16, 935.
[38]
Silvestri, A.; Mondini, S.; Marelli, M.; Pifferi, V.; Falciola, L.; Ponti, A.; Ferretti, A. M.; Polito, L. Synthesis of water dispersible and catalytically active gold-decorated cobalt ferrite nanoparticles. Langmuir 2016, 32, 7117-7126.
[39]
Saire-Saire, S.; Barbosa, E. C. M.; Garcia, D.; Andrade, L. H.; Garcia-Segura, S.; Camargo, P. H. C.; Alarcon, H. Green synthesis of Au decorated CoFe2O4 nanoparticles for catalytic reduction of 4-nitrophenol and dimethylphenylsilane oxidation. RSC Adv. 2019, 9, 22116-22123.
[40]
Guo, J. L.; Chiou, Y. D.; Liang, W. I.; Liu, H. J.; Chen, Y. J.; Kuo, W. C.; Tsai, C. Y.; Tsai, K. A.; Kuo, H. H.; Hsieh, W. F. et al. Complex oxide-noble metal conjugated nanoparticles. Adv. Mater. 2013, 25, 2040-2044.
[41]
Li, Y. Q.; Zhang, Q.; Nurmikko, A. V.; Sun, S. H. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett. 2005, 5, 1689-1692.
[42]
Jiang, G. M.; Huang, Y. X.; Zhang, S.; Zhu, H. Y.; Wu, Z. B.; Sun, S. H. Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe3O4 heterostructured nanoparticles. Nanoscale 2016, 8, 17947-17952.
[43]
Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273-279.
[44]
Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509-2511.
[45]
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.
[46]
Mason, W. R. Spectrometer for simultaneous measurement of absorption and circular dichroism spectra. Anal. Chem. 1982, 54, 646-648.
[47]
Fantechi, E.; Roca, A. G.; Sepúlveda, B.; Torruella, P.; Estradé, S.; Peiró, F.; Coy, E.; Jurga, S.; Bastús, N. G.; Nogués, J. et al. Seeded growth synthesis of Au-Fe3O4 heterostructured nanocrystals: Rational design and mechanistic insights. Chem. Mater. 2017, 29, 4022-4035.
[48]
Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875-881.
[49]
Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379-382.
[50]
Orbaek, A. W.; Morrow, L.; Maguire-Boyle, S. J.; Barron, A. R. Reagent control over the composition of mixed metal oxide nanoparticles. J. Exp. Nanosci. 2015, 10, 324-349.
[51]
Bao, N. Z.; Shen, L. M.; An, W.; Padhan, P.; Heath Turner, C.; Gupta, A. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater. 2009, 21, 3458-3468.
[52]
Wei, Y. H.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 2008, 4, 1635-1639.
[53]
Schick, I.; Gehrig, D.; Montigny, M.; Balke, B.; Panthöfer, M.; Henkel, A.; Laquai, F.; Tremel, W. Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem. Mater. 2015, 27, 4877-4884.
[54]
Zeng, H.; Sun, S. H. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18, 391-400.
[55]
Bohren, C. F.; Huffman, D. R. Measured optical properties. In Absorption and Scattering of Light by Small Particles; Bohren, C. F.; Huffman, D. R., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1998.
[56]
Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, 1995.
[57]
Wohlfarth, E. P. Ferromagnetic Materials. A Handbook on the Properties of Magnetically Ordered Substances; North Holland: New York, 1986; Vol. 2.
[58]
Del Bianco, L.; Spizzo, F.; Barucca, G.; Ruggiero, M. R.; Geninatti Crich, S.; Forzan, M.; Sieni, E.; Sgarbossa, P. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. Nanoscale 2019, 11, 10896-10910.
[59]
Campo, G.; Pineider, F.; Bonanni, V.; Albino, M.; Caneschi, A.; De Julián Fernández, C.; Innocenti, C.; Sangregorio, C. Magneto-optical probe for investigation of multiphase fe oxide nanosystems. Chem. Mater. 2015, 27, 466-473.
[60]
Albino, M.; Fantechi, E.; Innocenti, C.; López-Ortega, A.; Bonanni, V.; Campo, G.; Pineider, F.; Gurioli, M.; Arosio, P.; Orlando, T. et al. Role of Zn2+ substitution on the magnetic, hyperthermic, and relaxometric properties of cobalt ferrite nanoparticles. J. Phys. Chem. C 2019, 123, 6148-6157.
[61]
Fontijn, W. F. J.; van der Zaag, P. J.; Feiner, L. F.; Metselaar, R.; Devillers, M. A. C. A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J. Appl. Phys. 1999, 85, 5100-5105.
[62]
Pineider, F.; Campo, G.; Bonanni, V.; de Julián Fernández, C.; Mattei, G.; Caneschi, A.; Gatteschi, D.; Sangregorio, C. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 2013, 13, 4785-4789.
[63]
Sepúlveda, B.; González-Díaz, J. B.; García-Martín, A.; Lechuga, L. M.; Armelles, G. Plasmon-induced magneto-optical activity in nanosized gold disks. Phys. Rev. Lett. 2010, 104, 147401.
[64]
Zaitoun, M. A.; Mason, W. R.; Lin, C. T. Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K. J. Phys. Chem. B 2001, 105, 6780-6784.
[65]
López-Ortega, A.; Takahashi, M.; Maenosono, S.; Vavassori, P. Plasmon induced magneto-optical enhancement in metallic Ag/FeCo core/shell nanoparticles synthesized by colloidal chemistry. Nanoscale 2018, 10, 18672-18679.
Nano Research
Pages 785-794
Cite this article:
Fantechi E, Innocenti C, Bertoni G, et al. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals. Nano Research, 2020, 13(3): 785-794. https://doi.org/10.1007/s12274-020-2696-x
Topics:

722

Views

18

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 19 September 2019
Revised: 03 February 2020
Accepted: 04 February 2020
Published: 09 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return