AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation

Wentao Song1Yiming Wang1Bing Wang2,3Yingfang Yao1,2,3( )Wenguang Wang2Jinhui Wu2Qing Shen4Wenjun Luo1,2,3Zhigang Zou1,2,3,5( )
Eco-materials and Renewable Energy Research Center (ERERC), College of Engneering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
Show Author Information

Graphical Abstract

Abstract

Great photoelectric properties can herald the high potentials of CsPbBr3 nanocrystals (NCs) to function as the fluorescent probes for early tumor diagnosis. However, the intrinsic water vulnerability of CsPbBr3 NCs highly restricts their biomedical applications. To conquer this challenge, we herein introduce a nature inspired "stress-response" method to tightly encapsulate CsPbBr3 into SiO2 nano-shells that can dramatically improve the water stability of CsPbBr3@SiO2 nanoparticles for over 48 h. We further highlighted the advantageous features of CsPbBr3@SiO2 by using them as the fluorescent probes for CT26 tumor cell imaging with their high water stability, biocompatibility, and low cytotoxicity. Our work for the first time exhibited the potential of lead halide perovskite NCs for tumor diagnosis, and can highly anticipate the further in vivo biomedical applications that light up live cells.

Electronic Supplementary Material

Download File(s)
12274_2020_2697_MOESM1_ESM.pdf (4.2 MB)

References

[1]
Chen, Y. C.; Tan, X. T.; Sun, Q. H.; Chen, Q. S.; Wang W. J.; Fan, X. D. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng. 2017, 1, 724-735.
[2]
Hu, X. X.; Wang, Y, Q.; Liu, H. Y.; Wang, J.; Tan, Y. N.; Wang, F. B.; Yuan, Q.; Tan, E. H. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes. Chem. Sci. 2017, 8, 466-472.
[3]
Alix-Panabières, C.; Pantel, K. Clinical prospects of liquid biopsies. Nat. Biomed. Eng. 2017, 1, 0065.
[4]
Wang, Y. C.; Hu, R.; Lin, G. M.; Roy, I.; Yong, K. T. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl. Mater. Interfaces 2013, 5, 2786-2799.
[5]
Hoffman, R. M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat. Rev. Cancer 2005, 5, 796-806.
[6]
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969-976.
[7]
Kogure, T.; Karasawa, S.; Araki, T.; Saito, K.; Kinjo, M.; Miyawaki, A. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 2006, 24, 577-581.
[8]
Zheng, X. C.; Mao, H.; Huo, D.; Wu, W.; Liu, B. R.; Jiang, X. Q. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 2017, 1, 0057.
[9]
Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11-18.
[10]
Li, K.; Hou, J. T.; Yang, J.; Yu, X. Q. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem. Commun. 2017, 53, 5539-5541.
[11]
Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88-93.
[12]
Lu, M.; Zhang, X. Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.
[13]
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
[14]
Quan, L. N.; de Arquer, P. F. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.
[15]
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394-405.
[16]
Wei, Y.; Deng, X. R.; Xie, Z. X.; Cai, X. C.; Liang, S. S.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater. 2017, 27, 1703535.
[17]
Wang, Y.; Li, X. M.; Sreejith, S.; Cao, F.; Wang, Z.; Stuparu, M. C.; Zeng, H. B.; Sun, H. D. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv. Mater. 2016, 28, 10637-10643.
[18]
Ke, W. J.; Stoumpos, C. C.; Kanatzidis, M. G. "Unleaded" perovskites: Status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 2018, 31, 1803230.
[19]
Rowley, G.; Spector, M.; Kormanec, J.; Roberts, M. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 2006, 4, 383-394.
[20]
Ruiz, N.; Kahne, D.; Silhavy, T. J. Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol. 2006, 4, 57-66.
[21]
Wang, Y. W.; Varadi, L.; Trinchi, A.; Shen, J. H.; Zhu, Y. H.; Wei, G.; Li, C. Z. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 2018, 14, 1803156.
[22]
Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C. W. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 2013, 46, 662-671.
[23]
Erogbogbo, F.; Yong, K. Y.; Roy, I.; Xu, G. X.; Prasad, P. N.; Swihart, M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008, 2, 873-878.
[24]
Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 2017, 12, 378-386.
[25]
Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718-8725.
[26]
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.
[27]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[28]
Zhang, F.; Shi, Z. F.; Li. S.; Ma, Z. Z.; Li, Y.; Wang, L. T.; Wu, D.; Tian, Y. T.; Du, G. T.; Li, X. J.; Shan, C. X. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interfaces 2019, 11, 28013-28022.
[29]
Zhong, Q. X.; Cao, M. H.; Hu, H. C.; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 2018, 12, 8579-8587.
[30]
Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white leds with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088-10094.
[31]
Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of ch3nh3pbbr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene. J. Am. Chem. Soc. 2016, 138, 5749-5752.
[32]
Liu, Z. Q.; Zhang, Y. Q.; Fan, Y.; Chen, Z. Q.; Tang, Z. B.; Zhao, J. L.; Lv, Y.; Lin, J.; Guo, X. Y.; Zhang, J. H. et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl. Mater. Interfaces 2018, 10, 13053-13061.
[33]
Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Li, S. Q.; Tang, X. S.; Du, J.; Zang, Z. G.; Zhou, M.; Hu, W.; Tian, Y. X. et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/ SiO2 nanocrystals with excellent stability. Adv. Opt. Mater. 2018, 6, 1700997.
[34]
Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J. Am. Chem. Soc. 2018, 140, 406-412.
[35]
Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134-8138.
[36]
Kapuscinski, J. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. 1995, 70, 220-233.
[37]
Ulbrich, K.; Michaelis, M.; Rothweiler, F.; Knobloch, T.; Sithisarn, P.; Cinatl, J.; Kreuter, J. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. Int. J. Pharm. 2011, 406, 128-134.
[38]
Kimura, K.; Yamasaki, K.; Nakamura, H.; Haratake, M.; Haratake, K.; Otagiri, M. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem. Pharm. Bull. 2018, 66, 382-390.
[39]
Tan, T. T.; Selvan, S. T.; Zhao, L.; Gao, S. J.; Ying, J. Y. Size control, shape evolution, and silica coating of near-infrared-emitting pbse quantum dots. Chem. Mater. 2007, 19, 3112-3117.
[40]
Sanz, J.; Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature 2008, 451, 953-957.
[41]
Cordeiro, M. F.; Guo, L.; Luong, V.; Harding, G.; Wang, W.; Jones, H. E.; Moss, S. E.; Sillito, A. M.; Fitzke, F. W. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc. Natl. Acad. Sci. USA 2004, 101, 13352-13356.
[42]
Ma, T. C.; Hou, Y.; Zeng, J. F.; Liu, C. Y.; Zhang, P. S.; Jing, L. H.; Shangguan, D. H.; Gao, M. Y. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc. 2018, 140, 211-218.
Nano Research
Pages 795-801
Cite this article:
Song W, Wang Y, Wang B, et al. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Research, 2020, 13(3): 795-801. https://doi.org/10.1007/s12274-020-2697-9
Topics:

920

Views

68

Crossref

N/A

Web of Science

70

Scopus

7

CSCD

Altmetrics

Received: 28 October 2019
Revised: 01 February 2020
Accepted: 04 February 2020
Published: 16 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return