AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants

Xinzhou Wu1,2,§Run Qin1,2,§Hanxiang Wu1,2Guangkai Yao1,2Yue Zhang1,2Ping Li1,2Yizhu Xu1,2Zhixiang Zhang1,2Zhibin Yin3( )Hanhong Xu1,2( )
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

§ Xinzhou Wu and Run Qin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Design and discovery of carrier-mediated modified pesticides are vital for reducing pesticide dosage and increasing utilization, yet it remains a great challenge due to limited insights into plant translocation mechanisms. Nanostructure/nanoparticle assisted laser desorption/ionization strategy has established itself as a preferential analytical tool for biological tissue analysis, whereas potential applications in plant sciences are hindered with regard to the inability to slice plant leaves and petals. Herein, we report gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for the spatiotemporal visualization of pesticide translocation in plant leaves. This approach plays a dual role in preserving spatial information and improving ionization efficiency for pesticides regardless of imaging artifacts due to homogenous AuNP deposition. Using this MSI platform, we proposed the elaborate plant translocation mechanism of agrochemicals for the first time, which is currently poorly understood. The dynamic processes of carrier-mediated pesticides can be clearly visualized, including crossing of plasma membranes by transporters, translocation downward in stems through the phloem, diffusion to the xylem and, conversely, accumulation at margins of the treated leaves. Moreover, this AuNP-assisted paper imprinting method could be highly compatible with laser-based MSI instruments, expediting researches across a broad range of fields, especially in nanomaterial development and life sciences.

Electronic Supplementary Material

Download File(s)
12274_2020_2700_MOESM1_ESM.pdf (3.5 MB)

References

[1]
Larsen, A. E.; Gaines, S. D.; Deschênes, O. Agricultural pesticide use and adverse birth outcomes in the san joaquin valley of california. Nat. Commun. 2017, 8, 302.
[2]
Baron, G. L.; Jansen, V. A. A.; Brown, M. J. F.; Raine, N. E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 2017, 1, 1308-1316.
[3]
Palmer, M. J.; Moffat, C.; Saranzewa, N.; Harvey, J.; Wright, G. A.; Connolly, C. N. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 2013, 4, 1634.
[4]
Woodcock, B. A.; Bullock, J. M.; Shore, R. F.; Heard, M. S.; Pereira, M. G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393-1395.
[5]
Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H. S.; Malena, D. A.; Gajiwala, P. H.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 2017, 356, 1395-1397.
[6]
Rundlöf, M.; Andersson, G. K. S.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B. K.; Pedersen, T. R.; Yourstone, J. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 2015, 521, 77-80.
[7]
Gill, R. J.; Ramos-Rodriguez, O.; Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 2012, 491, 105-108.
[8]
Yao, G. K.; Wen, Y. J.; Zhao, C.; Xu, H. H. Novel amino acid ester- chlorantraniliprole conjugates: Design, synthesis, phloem accumulation and bioactivity. Pest Manag. Sci. 2017, 73, 2131-2137.
[9]
Wu, H. X.; Xu, H. H.; Marivingt-Mounir, C.; Bonnemain, J. L.; Chollet, J. F. Vectorizing agrochemicals: Enhancing bioavailability via carrier-mediated transport. Pest Manag. Sci. 2019, 75, 1507-1516.
[10]
Lei, Z. W.; Wang, J.; Mao, G. L.; Wen, Y. J.; Tian, Y. X.; Wu, H. W.; Li, Y. F.; Xu, H. H. Glucose positions affect the phloem mobility of glucose-fipronil conjugates. J. Agric. Food Chem. 2014, 62, 6065-6071.
[11]
Schroeder, J. I.; Delhaize, E.; Frommer, W. B.; Guerinot, M. L.; Harrison, M. J.; Herrera-Estrella, L.; Horie, T.; Kochian, L. V.; Munns, R.; Nishizawa, N. K. et al. Using membrane transporters to improve crops for sustainable food production. Nature 2013, 497, 60-66.
[12]
Vermaas, J. V.; Dixon, R. A.; Chen, F.; Mansfield, S. D.; Boerjan, W.; Ralph, J.; Crowley, M. F.; Beckham, G. T. Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. USA 2019, 116, 23117-23123.
[13]
Shabala, S. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011, 190, 289-298.
[14]
He, Y. J.; Qian, L. C.; Liu, X.; Hu, R. R.; Huang, M. R.; Liu, Y. L.; Chen, G. Q.; Losic, D.; Zhu, H. W. Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Res. 2018, 11, 6010-6022.
[15]
He, Y. J.; Hu, R. R.; Zhong, Y. J.; Zhao, X. L.; Chen, Q.; Zhu, H. W. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018, 11, 1928-1937.
[16]
David, M. D. Insecticide adme for support of early-phase discovery: Combining classical and modern techniques. Pest Manag. Sci. 2017, 73, 692-699.
[17]
Avellan, A.; Yun, J.; Zhang, Y. L.; Spielman-Sun, E.; Unrine, J. M.; Thieme, J.; Li, J. R.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 5291-5305.
[18]
Wu, H. X.; Yang, W.; Zhang, Z. X.; Huang, T.; Yao, G. K.; Xu, H. H. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism. J. Agric. Food Chem. 2012, 60, 6088-6094.
[19]
Wang, J.; Lei, Z. W.; Wen, Y. J.; Mao, G. L.; Wu, H. X.; Xu, H. H. A novel fluorescent conjugate applicable to visualize the translocation of glucose-fipronil. J. Agric. Food Chem. 2014, 62, 8791-8798.
[20]
Fu, Q. G.; Dudley, S.; Sun, C. L.; Schlenk, D.; Gan, J. Stable isotope labeling-assisted metabolite probing for emerging contaminants in plants. Anal. Chem. 2018, 90, 11040-11047.
[21]
Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass spectrometry imaging with laser-induced postionization. Science 2015, 348, 211-215.
[22]
Niehaus, M.; Soltwisch, J.; Belov, M. E.; Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 2019, 16, 925-931.
[23]
Dong, Y. H.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample preparation for mass spectrometry imaging of plant tissues: A review. Front. Plant Sci. 2016, 7, 60.
[24]
Bhandari, D. R.; Wang, Q.; Friedt, W.; Spengler, B.; Gottwald, S.; Römpp, A. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst 2015, 140, 7696-7709.
[25]
Li, B.; Bhandari, D. R.; Janfelt, C.; Römpp, A.; Spengler, B. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging. Plant J. 2014, 80, 161-171.
[26]
Gemperline, E.; Keller, C.; Li, L. J. Mass spectrometry in plant-omics. Anal. Chem. 2016, 88, 3422-3434.
[27]
Li, B.; Knudsen, C.; Hansen, N. K.; Jørgensen, K.; Kannangara, R.; Bak, S.; Takos, A.; Rook, F.; Hansen, S. H.; Møller, B. L. et al. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant J. 2013, 74, 1059-1071.
[28]
Thunig, J.; Hansen, S. H.; Janfelt, C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal. Chem. 2011, 83, 3256-3259.
[29]
Hemalatha, R. G.; Pradeep, T. Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI MS) imaging. J. Agric. Food Chem. 2013, 61, 7477-7487.
[30]
Wang, T. T.; Cheng, X. L.; Xu, H. H.; Meng, Y. F.; Yin, Z. B.; Li, X. P.; Hang, W. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal. Chem. 2020, 92, 543-553.
[31]
Li, X. P.; Liang, Z. S.; Zhang, S. D.; Wang, T. T.; Hang, W. Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Res. 2018, 11, 5989-5996.
[32]
Nilsson, P. T.; Eriksson, A. C.; Ludvigsson, L.; Messing, M. E.; Nordin, E. Z.; Gudmundsson, A.; Meuller, B. O.; Deppert, K.; Fortner, E. C.; Onasch, T. B. et al. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res. 2015, 8, 3780-3795.
[33]
Van Nuffel, S.; Elie, N.; Yang, E.; Nouet, J.; Touboul, D.; Chaurand, P.; Brunelle, A. Insights into the MALDI process after matrix deposition by sublimation using 3D TOF-SIMS imaging. Anal. Chem. 2018, 90, 1907-1914.
[34]
Hoffmann, T.; Dorrestein, P. C. Homogeneous matrix deposition on dried agar for MALDI imaging mass spectrometry of microbial cultures. J. Am. Soc. Mass. Spectrom. 2015, 26, 1959-1962.
[35]
Shi, R.; Dai, X.; Li, W. F.; Lu, F.; Liu, Y.; Qu, H. H.; Li, H.; Chen, Q. Y.; Tian, H.; Wu, E. H. et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano 2017, 11, 9500-9513.
[36]
Shi, R.; Li, H.; Wu, E. H.; Xiong, L. P.; Lv, R.; Guo, R. C.; Liu, Y.; Xu, G. Q.; Kang, Z. H.; Liu, J. Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. Nanoscale 2017, 9, 8410-8417.
[37]
Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389-1393.
[38]
Wuithschick, M.; Birnbaum, A.; Witte, S.; Sztucki, M.; Vainio, U.; Pinna, N.; Rademann, K.; Emmerling, F.; Kraehnert, R.; Polte, J. Turkevich in new robes: Key questions answered for the most common gold nanoparticle synthesis. ACS Nano 2015, 9, 7052-7071.
[39]
Yin, Z. B.; Cheng, X. L.; Liu, R.; Li, X. P.; Hang, L.; Hang, W.; Xu, J. Y.; Yan, X. M.; Li, J. F.; Tian, Z. Q. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem., Int. Ed. 2019, 58, 4541-4546.
[40]
Yin, Z. B.; Xu, Z. Y.; Liu, R.; Hang, W.; Huang, B. L. Microtrace analysis of rare earth element residues in femtogram quantities by laser desorption and laser postionization mass spectrometry. Anal. Chem. 2017, 89, 7455-7461.
[41]
Yin, Z. B.; Hang, L.; Liu, R.; Hang, W.; Huang, B. L. Improved detection sensitivity of elements in solids via laser postionization in laser desorption time-of-flight mass spectrometry. J. Mass Spectrom. 2018, 53, 435-443.
[42]
Dawson, J. H. J.; Guilhaus, M. Orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 1989, 3, 155-159.
[43]
Ojea-Jiménez, I.; López, X.; Arbiol, J.; Puntes, V. Citrate-coated gold nanoparticles As smart scavengers for mercury(II) removal from polluted waters. ACS Nano 2012, 6, 2253-2260.
[44]
Yao, H. B.; Mao, L. B.; Yan, Y. X.; Cong, H. P.; Lei, X.; Yu, S. H. Gold nanoparticle functionalized artificial nacre: Facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties. ACS Nano 2012, 6, 8250-8260.
[45]
Zhang, Z.; Chen, H. H.; Xing, C. Y.; Guo, M. Y.; Xu, F. G.; Wang, X. D.; Gruber, H. J.; Zhang, B. L.; Tang, J. L. Sodium citrate: A universal reducing agent for reduction/decoration of graphene oxide with Au nanoparticles. Nano Res. 2011, 4, 599-611.
[46]
Garcia, C. C.; Vadillo, J. M.; Palanco, S.; Ruiz, J.; Laserna, J. J. Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 923-931.
[47]
Peurrung, A. J.; Cowin, J. P.; Teeter, G.; Barlow, S. E.; Orlando, T. M. Space-charge-induced acceleration of ions emitted by laser-irradiated surfaces. J. Appl. Phys. 1995, 78, 481-488.
[48]
Yang, J. H.; Caprioli, R. M. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal. Chem. 2011, 83, 5728-5734.
[49]
Bouschen, W.; Schulz, O.; Eikel, D.; Spengler, B. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun. Mass Spectrom. 2010, 24, 355-364.
[50]
Xie, Y.; Zhao, J. L.; Wang, C. W.; Yu, A. X.; Liu, N.; Chen, L.; Lin, F.; Xu, H. H. Glycinergic-fipronil uptake is mediated by an amino acid carrier system and induces the expression of amino acid transporter genes in Ricinus communis seedlings. J. Agric. Food Chem. 2016, 64, 3810-3818.
[51]
Jiang, X. Y.; Xie, Y.; Ren, Z. F.; Ganeteg, U.; Lin, F.; Zhao, C.; Xu, H. H. Design of a new glutamine-fipronil conjugate with α-amino acid function and its uptake by A. thaliana lysine histidine transporter 1 (AtLHT1). J. Agric. Food Chem. 2018, 66, 7597-7605.
[52]
Muller, A.; Schader, C.; Scialabba, N. E. H.; Brüggemann, J.; Isensee, A.; Erb, K. H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290.
[53]
Guéniche, N.; Bruyere, A.; Le Vée, M.; Fardel, O. Implication of human drug transporters to toxicokinetics and toxicity of pesticides. Pest Manag. Sci. 2020, 76, 18-25.
[54]
Henry, M.; Béguin, M.; Requier, F.; Rollin, O.; Odoux, J. F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348-350.
[55]
Jensen, O. P. Pesticide impacts through aquatic food webs. Science 2019, 366, 566-567.
[56]
Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M. X.; Tan, W. H. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972-8980.
[57]
Peng, J. J.; Sun, Y.; Liu, Q.; Yang, Y.; Zhou, J.; Feng, W.; Zhang, X. Z.; Li, F. Y. Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Res. 2012, 5, 770-782.
Nano Research
Pages 611-620
Cite this article:
Wu X, Qin R, Wu H, et al. Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Research, 2020, 13(3): 611-620. https://doi.org/10.1007/s12274-020-2700-5
Topics:

1148

Views

54

Crossref

N/A

Web of Science

51

Scopus

5

CSCD

Altmetrics

Received: 11 January 2020
Revised: 01 February 2020
Accepted: 05 February 2020
Published: 28 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return