AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwich-like structure for efficient electrocatalytic oxygen evolution

Mengqiu Huang1Weiwei Liu2,Lei Wang1Jiwei Liu1Guanyu Chen1Wenbin You1Jie Zhang1Lijun Yuan2Xuefeng Zhang2Renchao Che1( )
Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

Present address: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China

Show Author Information

Graphical Abstract

Abstract

Developing efficient and low-cost electrocatalysts for oxygen evolution reaction (OER) with high electrochemical activity and durability for diverse renewable and sustainable energy technologies remains challenging. Herein, an ultrasonic-assisted and coordination modulation strategy is developed to construct sandwich-like metal-organic framework (MOF) derived hydroxide nanosheet (NS) arrays/graphene oxide (GO) composite via one-step self-transformation route. Inducing from unsteady state, the dodecahedral ZIF-67 with Co2+ in tetrahedral coordination auto-converts into defect-rich ultrathin layered hydroxides with the interlayered ion NO3-. The self-transforming α-Co(OH)2/GO nanosheet arrays from ZIF-67 (Co(OH)2-GNS) change the coordination mode of Co2+ and bring about the exposure of more metal active sites, thereby enhancing the spatial utilization ratio within the framework. As monometal-based electrocatalyst, the optimized Co(OH)2-GNS exhibits remarkable OER catalytic performance evidenced by a low overpotential of 259 mV to achieve a current density of 10 mA·cm-2 in alkaline medium, even exceeding commercial RuO2. During the oxygen evolution process, electron migration can be accelerated by the interfacial/in-plane charge polarization and local electric field, corroborated by the off-axis electron holography. Density functional theory (DFT) calculations further studied the collaboration between ultrathin Co(OH)2 NS and GO, which leads to lower energy barriers of intermediate products and greatly promotes electrocatalytic property.

Electronic Supplementary Material

Download File(s)
12274_2020_2701_MOESM1_ESM.pdf (8.7 MB)

References

[1]
Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.
[2]
Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/ nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater., in press, DOI: .
[3]
Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342-11351.
[4]
Ma, Y.; Chu, J. Y.; Li, Z. N.; Rakov, D.; Han, X. J.; Du, Y. C.; Song, B.; Xu, P. Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small 2018, 14, 1803783.
[5]
Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687-693.
[6]
Li, Y. Z.; Abbott, J.; Sun, Y. C.; Sun, J. M.; Du, Y. C.; Han, X. J.; Wu, G.; Xu, P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl. Catal. B: Environ. 2019, 258, 117952.
[7]
Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939-943.
[8]
Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924-6927.
[9]
Hu, H.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem., Int. Ed. 2016, 55, 9514-9518.
[10]
Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.
[11]
Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645-7649.
[12]
Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal- organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.
[13]
Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.
[14]
Yang, J.; Zhang, F. Y.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889-10893.
[15]
Li, Y. Z.; Niu S. Q.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S. J.; Song, B.; Xu, P. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 2018, 10, 7291-7297.
[16]
Han, M. K.; Yin, X. W.; Li, X. L.; Anasori, B.; Zhang, L. T.; Cheng, L. F.; Gogotsi, Y. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 2017, 9, 20038-20045.
[17]
Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250-13258.
[18]
Xu, C. Y.; Li, Q. H.; Shen, Q. L.; Yuan, Z.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale 2019, 11, 10738-10745.
[19]
Wu, J. J.; Zhang, D.; Wang, Y.; Wan, Y.; Hou, B. R. Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J. Power Sources 2012, 198, 122-126.
[20]
Wang, L.; Li, X.; Li, Q. Q.; Zhao, Y. H.; Che, R. C. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 2018, 10, 22602-22610.
[21]
Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium- sulfur batteries. J. Mater. Chem. A 2019, 7, 7074-7081.
[22]
Yao, Y.; Li, C.; Huo, Z. L.; Liu, M.; Zhu, C. X.; Gu, C. Z.; Duan, X. F.; Wang, Y. G.; Gu, L.; Yu, R. C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun. 2013, 4, 2764.
[23]
Rau, W. D.; Schwander, P.; Baumann, F. H.; Höppner, W.; Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 1999, 82, 2614-2617.
[24]
Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884-888.
[25]
Firmiano, E. G. S.; Cordeiro, M. A. L.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Leite, E. R. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 2012, 48, 7687-7689.
[26]
Hu, W. H.; Shang, X.; Han, G. Q.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 2016, 100, 236-242.
[27]
Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J. et al. Sandwich-like reduced graphene oxide/carbon black/amorphous cobalt borate nanocomposites as bifunctional cathode electrocatalyst in rechargeable zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801495.
[28]
Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670-8677.
[29]
Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166-16170.
[30]
Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632-2641.
[31]
Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 2018, 28, 1803272.
[32]
Pei, T.; Zhang, Z. Q.; Li, B. H.; Vinu, M.; Lin, C. H.; Lee, S. Raman observation of the “volcano curve” in the formation of carbonized metal-organic frameworks. J. Phys. Chem. C 2017, 121, 22939-22947.
[33]
Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.
[34]
Liu, X. L.; Wu, J. J.; Huang, X. L.; Liu, Z. W.; Zhang, Y.; Wang, M.; Che, R. C. Predominant growth orientation of Li1.2(Mn0.4Co0.4)O2 cathode materials produced by the NaOH compound molten salt method and their enhanced electrochemical performance. J. Mater. Chem. A 2014, 2, 15200-15208.
[35]
Li, S. S.; Zhao, Y. H.; Liu, Z. W.; Yang, L. T.; Zhang, J.; Wang, M.; Che, R. C. Flexible graphene-wrapped carbon nanotube/graphene@ MnO2 3D multilevel porous film for high-performance lithium-ion batteries. Small 2018, 14, 1801007.
[36]
Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668-1674.
[37]
Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/ electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520-531.
[38]
Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605-1611.
[39]
Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.
[40]
Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500-1519.
[41]
Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.
[42]
Bao, J.; Wang, Z. L.; Xie, J. F.; Xu, L.; Lei, F. C.; Guan, M. L.; Huang, Y. P.; Zhao, Y.; Xia, J. X.; Li, H. M. The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorg. Chem. Front. 2018, 5, 2964-2970.
[43]
Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311-22319.
[44]
Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322-12329.
[45]
Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.
[46]
Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694-3698.
[47]
Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.
[48]
Jin, H. Y.; Mao, S. J.; Zhan, G. P.; Xu, F.; Bao, X. B.; Wang, Y. Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 1078-1084.
[49]
Jiao, W. L.; Chen, C.; You, W. B.; Zhang, J.; Liu, J. W.; Che, R. C. Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small 2019, 15, 1805032.
Nano Research
Pages 810-817
Cite this article:
Huang M, Liu W, Wang L, et al. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwich-like structure for efficient electrocatalytic oxygen evolution. Nano Research, 2020, 13(3): 810-817. https://doi.org/10.1007/s12274-020-2701-4
Topics:

908

Views

57

Crossref

N/A

Web of Science

53

Scopus

6

CSCD

Altmetrics

Received: 09 October 2019
Revised: 02 February 2020
Accepted: 06 February 2020
Published: 26 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return