AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface and intrinsic contributions to extinction properties of ZnSe quantum dots

Shangxin Lin1,2Jiongzhao Li2Chaodan Pu2Hairui Lei2Meiyi Zhu2Haiyan Qin2Xiaogang Peng2( )
College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

Abstract

This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface (Se-ZnSe or Zn-ZnSe QDs). In addition to commonly observed photoluminescence quenching by anionic surface sites, Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible (Vis) absorption spectra. Similar to most QDs reported in literature, monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap. However, for monodisperse Se-ZnSe QDs, all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap. Along increasing their size, a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones, which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs. Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size, both of them approach the same bulk limit. In addition to contribution of the lattice, extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes, which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping. For Se-ZnSe QDs, there is the third term identified for their extinction coefficients per nanocrystal, which is proportional to the square of size of the QDs and consistent with surface contribution.

Electronic Supplementary Material

Download File(s)
12274_2020_2703_MOESM1_ESM.pdf (3.5 MB)

References

[1]
Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 1984, 80, 4464-4469.
[2]
Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Melting in semiconductor nanocrystals. Science 1992, 256, 1425-1427.
[3]
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354-357.
[4]
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800-803.
[5]
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
[6]
Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435-446.
[7]
Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.
[8]
Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018.
[9]
Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 2008, 112, 11600-11608.
[10]
Yu, Y. H.; Kamat, P. V.; Kuno, M. A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Adv. Funct. Mater. 2010, 20, 1464-1472.
[11]
Pan, Z. X.; Zhang, H.; Cheng, K.; Hou, Y. M.; Hua, J. L.; Zhong, X. H. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 2012, 6, 3982-3991.
[12]
Jung, M. H.; Chu, M. J. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices. Nanoscale 2014, 6, 9241-9249.
[13]
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.
[14]
Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95, 525-532.
[15]
Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 2002, 106, 7619-7622.
[16]
Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555-2560.
[17]
Nozik, A. J.; Memming, R. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 1996, 100, 13061-13078.
[18]
Schmelz, O.; Mews, A.; Basché, T.; Herrmann, A.; Müllen, K. Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir 2001, 17, 2861-2865.
[19]
Zeng, P.; Kirkwood, N.; Mulvaney, P.; Boldt, K.; Smith, T. A. Shell effects on hole-coupled electron transfer dynamics from CdSe/CdS quantum dots to methyl viologen. Nanoscale 2016, 8, 10380-10387.
[20]
Li, J. Z.; Chen, J. L.; Shen, Y. M.; Peng, X. G. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 2018, 11, 3991-4004.
[21]
Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337-10346.
[22]
Jones, M.; Scholes, G. D. On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 2010, 20, 3533-3538.
[23]
Jones, M.; Lo, S. S.; Scholes, G. D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. USA 2009, 106, 3011-3016.
[24]
Chou, H. L.; Tseng, C. H.; Pillai, K. C.; Hwang, B. J.; Chen, L. Y. Surface related emission in CdS quantum dots. DFT simulation studies. J. Phys. Chem. C 2011, 115, 20856-20863.
[25]
Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230-4235.
[26]
Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134-8142.
[27]
Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504-17512.
[28]
Fischer, S. A.; Crotty, A. M.; Kilina, S. V.; Ivanov, S. A.; Tretiak, S. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale 2012, 4, 904-914.
[29]
Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536-18548.
[30]
Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863-5872.
[31]
Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-black” PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875-1886.
[32]
Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455-5460.
[33]
Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of Zns. Phys. Rev. Lett. 1994, 72, 416-419.
[34]
Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 7038-7054.
[35]
Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776-1779.
[36]
Chen, O.; Shelby, D. E.; Yang, Y. A.; Zhuang, J. Q.; Wang, T.; Niu, C. G.; Omenetto, N.; Cao, Y. C. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew. Chem., Int. Ed. 2010, 49, 10132-10135.
[37]
Norberg, N. S.; Parks, G. L.; Salley, G. M.; Gamelin, D. R. Giant excitonic zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc. 2006, 128, 13195-13203.
[38]
Yang, X. L.; Pu, C. D.; Qin, H. Y.; Liu, S. J.; Xu, Z. A.; Peng, X. G. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 2288-2298.
[39]
Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652-670.
[40]
Lai, R. C.; Pu, C. D.; Peng, X. G. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. J. Am. Chem. Soc. 2018, 140, 9174-9183.
[41]
Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: Berlin, 2004.
[42]
Jasieniak, J.; Mulvaney, P. From Cd-rich to Se-rich—The manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841-2848.
[43]
Zhu, C. Q.; Chen, D. D.; Cao, W. C.; Lai, R. C.; Pu, C. D.; Li, J. Z.; Kong, X. Q.; Peng, X. G. Facet-dependent on-surface reactions in the growth of CdSe nanoplatelets. Angew. Chem., Int. Ed. 2019, 58, 17764-17770.
[44]
Dean, J. A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill, Inc: New York, 1999; pp 330-340.
[45]
Wang, L. W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B 1996, 53, 9579-9582.
[46]
Kilina, S. V.; Neukirch, A. J.; Habenicht, B. F.; Kilin, D. S.; Prezhdo, O. V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404.
[47]
Wei, H. H. Y.; Evans, C. M.; Swartz, B. D.; Neukirch, A. J.; Young, J.; Prezhdo, O. V.; Krauss, T. D. Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett. 2012, 12, 4465-4471.
[48]
Omogo, B.; Aldana, J. F.; Heyes, C. D. Radiative and nonradiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands. J. Phys. Chem. C 2013, 117, 2317-2327.
[49]
Mahler, B.; Lequeux, N.; Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 2010, 132, 953-959.
[50]
Yang, Y.; Li, J. Z.; Lin, L.; Peng, X. G. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Res. 2015, 8, 3353-3364.
Nano Research
Pages 824-831
Cite this article:
Lin S, Li J, Pu C, et al. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Research, 2020, 13(3): 824-831. https://doi.org/10.1007/s12274-020-2703-2
Topics:

759

Views

37

Crossref

N/A

Web of Science

37

Scopus

8

CSCD

Altmetrics

Received: 30 December 2019
Revised: 04 February 2020
Accepted: 06 February 2020
Published: 26 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return