AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water

Bojian Hu1Peiyi Wu1,2( )
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

Abstract

Synthesizing large-area ultrathin two-dimensional (2D) nanostructures in aqueous media has received considerable increasing attention but remains a big challenge. Herein, we report a facile method for the synthesis of two unprecedented large-area ultrathin 2D supramolecular nanosheets via ionic self-assembly in water. Upon consideration of electrostatic interaction and repulsive effect, deprotonated tetrakis(4-carboxyphenyl)porphyrin (TCPP) or Fe(III) tetra(4-carboxyphenyl)porphine chloride (TCPP(Fe)) as connection vertex and protonated bis(2-dimethylaminoethyl) ether (BDMAEE) unit as bridging edge connect with each other to form few-layer 2D nanosheet with a thickness of ~ 1.8-1.9 nm, while the lateral size can close to one hundred micrometers. Moreover, the well-dispersed 2D TCPP(Fe)-BDMAEE with heme-like active center displays intrinsic peroxidase-like catalytic activity, which can be used to detect hydrogen peroxide. The present facile strategy highlights new opportunities in constructing large-area ultrathin 2D supramolecular nanomaterials and paves the avenue to expand their potential applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2709_MOESM1_ESM.pdf (3.5 MB)

References

[1]
Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[2]
Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509-11539.
[3]
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
[4]
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[5]
Zhuang, X. D.; Mai, Y. Y.; Wu, D. Q.; Zhang, F.; Feng, X. L. Two-dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater. 2015, 27, 403-427.
[6]
Zhu, J. H.; Yang, C. Q.; Lu, C. B.; Zhang, F.; Yuan, Z. H.; Zhuang, X. D. Two-dimensional porous polymers: From sandwich-like structure to layered skeleton. Acc. Chem. Res. 2018, 51, 3191-3202.
[7]
Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018, 361, 52-57.
[8]
Chen, C.; Joshi, T.; Li, H. F.; Chavez, A. D.; Pedramrazi, Z.; Liu, P. N.; Li, H.; Dichtel, W. R.; Bredas, J. L.; Crommie, M. F. Local electronic structure of a single-layer porphyrin-containing covalent organic framework. ACS Nano 2018, 12, 385-391.
[9]
Yuan, K.; Song, T. Q.; Zhu, X. T.; Li, B. L.; Han, B.; Zheng, L.; Li, J. F.; Zhang, X. T.; Hu, W. P. Construction of large-area ultrathin conductive metal-organic framework films through vapor-induced conversion. Small 2019, 15, 1804845.
[10]
Liao, W. M.; Zhang, J. H.; Yin, S. Y.; Lin, H.; Zhang, X. M.; Wang, J. H.; Wang, H. P.; Wu, K.; Wang, Z.; Fan, Y. N. et al. Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework. Nat. Commun. 2018, 9, 2401.
[11]
Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[12]
Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z. L.; Schmid, M.; Steinrück, H. P.; Gottfried, J. M.; Lin, N. Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin: Toward a mixed-valence two-dimensional coordination network. J. Am. Chem. Soc. 2012, 134, 6401-6408.
[13]
Yadav, K.; Pratibha; Verma, S.; Gopakumar, T. G. Solution-processed large-area ultrathin films of metal-coordinated electron-rich adenine-based ligand. J. Phys. Chem. C 2019, 123, 20922-20927.
[14]
Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y. B.; Sue, A. C. H.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135, 17913-17918.
[15]
Zhang, L.; Jia, Y. L.; Wang, H.; Zhang, D. W.; Zhang, Q.; Liu, Y.; Li, Z. T. pH-responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polym. Chem. 2016, 7, 1861-1865.
[16]
Zhang, Y.; Zhan, T. G.; Zhou, T. Y.; Qi, Q. Y.; Xu, X. N.; Zhao, X. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun. 2016, 52, 7588-7591.
[17]
Zhang, L.; Zhou, T. Y.; Tian, J.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 2014, 5, 4715-4721.
[18]
Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res. 2008, 1, 412-419.
[19]
Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.
[20]
Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858-3867.
[21]
Shin, S.; Lim, S.; Kim, Y.; Kim, T.; Choi, T. L.; Lee, M. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction. J. Am. Chem. Soc. 2013, 135, 2156-2159.
[22]
Bösch, C. D.; Langenegger, S. M.; Häner, R. Light-harvesting nanotubes formed by supramolecular assembly of aromatic oligophosphates. Angew. Chem., Int. Ed. 2016, 55, 9961-9964.
[23]
Zheng, Y. J.; Zhou, H. X.; Liu, D.; Floudas, G.; Wagner, M.; Koynov, K.; Mezger, M.; Butt, H. J.; Ikeda, T. Supramolecular thiophene nanosheets. Angew. Chem., Int. Ed. 2013, 52, 4845-4848.
[24]
De, S.; Ramakrishnan, S. Charge-transfer reinforced folding of novel ionenes. Macromolecules 2009, 42, 8599-8603.
[25]
Jiang, S. Y.; Zhao, X. Soluble two-dimensional supramolecular organic frameworks (SOFs): An emerging class of 2D supramolecular polymers with internal long-range orders. Chinese J. Polym. Sci. 2019, 37, 1-10.
[26]
Hu, B. J.; Sun, S. T.; Wu, B. H.; Wu, P. Y. Colloidally stable monolayer nanosheets with colorimetric responses. Small 2019, 15, 1804975.
[27]
Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng, X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058-12063.
[28]
Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A. Entangled two-dimensional coordination networks: A general survey. Chem. Rev. 2014, 114, 7557-7580.
[29]
Pfeffermann, M.; Dong, R. H.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Müllen, K.; Feng, X. L. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137, 14525-14532.
[30]
Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372-7378.
[31]
Lu, Q. P.; Zhao, M. T.; Chen, J. Z.; Chen, B.; Tan, C. L.; Zhang, X.; Huang, Y.; Yang, J.; Cao, F. F.; Yu, Y. F. et al. In situ synthesis of metal sulfide nanoparticles based on 2D metal-organic framework nanosheets. Small 2016, 12, 4669-4674.
[32]
Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924-6927.
[33]
He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.
[34]
Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Müllen, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 2014, 136, 6083-6091.
[35]
Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356-1359.
[36]
Zheng, J.; Zhang, H.; Dong, S. H.; Liu, Y. P.; Nai, C. T.; Shin, H. S.; Jeong, H. Y.; Liu, B.; Loh, K. P. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 5, 2995.
[37]
Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952-14955.
[38]
Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496-12505.
[39]
Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149-4155.
[40]
Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew. Chem., Int. Ed. 2018, 57, 5708-5713.
[41]
Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681-2701.
[42]
Liu, Y.; Purich, D. L.; Wu, C. C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L. Q.; Cansiz, S.; Hou, W. J.; Wang, Y. Y. et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzyme-like properties. J. Am. Chem. Soc. 2015, 137, 14952-14958.
Nano Research
Pages 868-874
Cite this article:
Hu B, Wu P. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Research, 2020, 13(3): 868-874. https://doi.org/10.1007/s12274-020-2709-9
Topics:

706

Views

22

Crossref

N/A

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 10 August 2019
Revised: 18 January 2020
Accepted: 10 February 2020
Published: 28 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return