AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phase transformation at controlled locations in nanowires by in situ electron irradiation

Hongtao Zhang1Wen Wang1Tao Xu1Feng Xu1( )Litao Sun1,2( )
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Solid state phase transformations have drawn great attention because they can be effectively exploited to control the microstructure and property of materials. Understanding the physics of such phase transformation processes is critical to designing materials with controlled structure and with desired properties. However, in traditional ex situ experiments, it is hard to achieve position controlled phase transformations or obtain desirable crystal phase on nanometer scale. Meanwhile the underlying mechanisms of the reaction processes are not fully understood due to the lack of direct and real-time observation. In this paper, we observe phase transformation from body-centered tetragonal PX-PbTiO3 to monoclinic TiO2(B) on the atomic scale by in situ electron irradiation during heat treatment in transmission electron microscope, at pre-defined locations on the sample. We demonstrate that by controlling the location of the incident electron beam, a porous TiO2(B) crystal structure can be formed at the desired area on the nanowire, which is difficult to achieve by traditional synthesis methods. Upon in situ heating, the Pb atoms in the crystal migrate out of the pristine nanowire through inelastic scattering under incident electrons while high temperature(> 400 °C) provides energy for the crystallization of TiO2(B) and the volatilization of a substantial number of Pb atoms, which makes the resultingTiO2(B) nanowires to be porous. In contrast, at temperatures < 400 °C, the segregated Pb atoms form Pb particles and the TiOx nanowires remain in the amorphous state. This work not only provides in situ visualization of the phase transition from the PX-PbTiO3 to monoclinic TiO2(B), but also suggests a crystallography engineering strategy to obtain the desired crystal phase at controlled locations on the nanometer scale.

Electronic Supplementary Material

Video
12274_2020_2711_MOESM1_ESM.mp4
Download File(s)
12274_2020_2711_MOESM2_ESM.pdf (10.4 MB)

References

[1]
Huang, X.; Liu, Z. Q.; Millet, M. M.; Dong, J. C.; Plodine, M.; Ding, F.; Schlögl, R.; Willinger, M. G. In situ atomic-scale observation of surface-tension-induced structural transformation of Ag-NiPx core-shell nanocrystals. ACS Nano 2018, 12, 7197-7205.
[2]
Zhang, Z.; Liu, N. S.; Li, L. Y.; Su, J.; Chen, P. P.; Lu, W.; Gao, Y. H.; Zou, J. In situ TEM observation of crystal structure transformation in InAs nanowires on atomic scale. Nano Lett. 2018, 18, 6597-6603.
[3]
Wang, J.; Durussel, A.; Sandu, C. S.; Sahini, M. G.; He, Z. B.; Setter, N. Mechanism of hydrothermal growth of ferroelectric PZT nanowires. J. Cryst. Growth 2012, 347, 1-6.
[4]
Xiao, Z.; Ren, Z. H.; Xia, Y.; Liu, Z. Y.; Xu, G.; Li, X.; Shen, G.; Han, G. R. Doping and phase transformation of single-crystal pre-perovskite PbTiO3 fibers with TiO6 edge-shared octahedra. CrystEngComm 2012, 14, 4520-4524.
[5]
Liu, Y.; Wang, H.; Zhang, X. In situ TEM nanoindentation studies on stress-induced phase transformations in metallic materials. JOM 2016, 68, 226-234.
[6]
Wang, J.; Wylie-van Eerd, B.; Sluka, T.; Sandu, C.; Cantoni, M.; Wei, X. K.; Kvasov, A.; McGilly, L. J.; Gemeiner, P.; Dkhil, B. et al. Negative-pressure-induced enhancement in a freestanding ferroelectric. Nat. Mater. 2015, 14, 985-990.
[7]
Zhu, G. N.; Wang, C. X.; Xia, Y. Y. Structural transformation of layered hydrogen trititanate (H2Ti3O7) to TiO2(B) and its electrochemical profile for lithium-ion intercalation. J. Power Sources 2011, 196, 2848-2853.
[8]
Li, W.; Bai, Y.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; van der Laak, N. K.; Chan, K. Y. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis. Environ. Sci. Technol. 2009, 43, 5423-5428.
[9]
Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.
[10]
Xu, T.; Xie, X.; Yin, K. B.; Sun, J.; He, L. B.; Sun, L. T. Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 2014, 10, 1724-1728.
[11]
Zhu, J. F.; Zhang, J. L.; Chen, F.; Anpo, M. Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2(B). Mater. Lett. 2005, 59, 3378-3381.
[12]
Durandurdu, M. Two successive amorphous-to-amorphous phase transformations in TiO2. J. Am. Ceram. Soc. 2017, 100, 3903-3911.
[13]
Lei, Y. M.; Li, J.; Wang, Z.; Sun, J.; Chen, F. Y.; Liu, H. W.; Ma, X. H.; Liu, Z. W. Atomic-scale investigation of a new phase transformation process in TiO2 nanofibers. Nanoscale 2017, 9, 4601-4609.
[14]
Pan, X. Y.; Ma, X. M. Study on the milling-induced transformation in TiO2 powder with different grain sizes. Mater. Lett. 2004, 58, 513-515.
[15]
Yang, J.; Gao, M. Z.; Jiang, S. B.; Huo, X. J.; Xia, R. Hysteretic phase transformation of two-dimensional TiO2. Mater. Lett. 2018, 232, 171-174.
[16]
Gao, M.; Bao, Y. B.; Qian, Y. X.; Deng, Y. F.; Li, Y. W.; Chen, G. H. Porous anatase-TiO2(B) dual-phase nanorods prepared from in situ pyrolysis of a single molecule precursor offer high performance lithium-ion storage. Inorg. Chem. 2018, 57, 12245-12254.
[17]
Giannuzzi, R.; Manca, M.; De Marco, L.; Belviso, M. R.; Cannavale, A.; Sibillano, T.; Giannini, C.; Cozzoli, P. D.; Gigli, G. Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl. Mater. Interfaces 2014, 6, 1933-1943.
[18]
Zukalová, M.; Kalbáč, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 2005, 17, 1248-1255.
[19]
Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. F.; Xu, D. D.; Yang, J.; Che, S. N. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater. 2012, 24, 3201-3204.
[20]
Wang, G.; Wang, Q.; Lu, W.; Li, J. H. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. J. Phys. Chem. B 2006, 110, 22029-22034.
[21]
Liu, H. S.; Bi, Z. H.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450-3454.
[22]
Marchand, R.; Brohan, L.; Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 1980, 15, 1129-1133.
[23]
Kobayashi, M.; Petrykin, V. V.; Kakihana, M.; Tomita, K.; Yoshimura, M. One-step synthesis of TiO2(B) nanoparticles from a water-soluble titanium complex. Chem. Mater. 2007, 19, 5373-5376.
[24]
Sugimoto, W.; Terabayashi, O.; Murakami, Y.; Takasu, Y. Electrophoretic deposition of negatively charged tetratitanate nanosheets and transformation into preferentially oriented TiO2(B) film. J. Mater. Chem. 2002, 12, 3814-3818.
[25]
Cai, Y.; Wang, H. E.; Huang, S. Z.; Jin, J.; Wang, C.; Yu, Y.; Li, Y.; Su, B. L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci. Rep. 2015, 5, 11557.
[26]
Zhao, B.; Chen, F.; Liu, H. Q.; Zhang, J. L. Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J. Phys. Chem. Solids 2011, 72, 201-206.
[27]
Li, X. D.; Wu, G. X.; Liu, X.; Li, W.; Li, M. C. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 2017, 31, 1-8.
[28]
Lei, Y. M.; Sun, J.; Liu, H. W.; Cheng, X.; Chen, F. Y.; Liu, Z. W. Atomic mechanism of predictable phase transition in dual-phase H2Ti3O7/TiO2 (B) nanofiber: An in situ heating TEM investigation. Chem.—Eur. J. 2014, 20, 11313-11317.
[29]
Ben Yahia, M.; Lemoigno, F.; Beuvier, T.; Filhol, J. S.; Richard-Plouet, M.; Brohan, L.; Doublet, M. L. Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. J. Chem. Phys. 2009, 130, 204501.
[30]
Ren, Z. H.; Xu, G.; Liu, Y.; Wei, X.; Zhu, Y. H.; Zhang, X. B.; Lv, G. L.; Wang, Y. W.; Zeng, Y. W.; Du, P. Y. et al. PbTiO3 nanofibers with edge-shared TiO6 octahedra. J. Am. Chem. Soc. 2010, 132, 5572-5573.
[31]
Wang, J.; Schenk, K.; Carvalho, A.; Eerd, B. W. V.; Trodahl, J.; Sandu, C. S.; Bonin, M.; Gregora, I.; He, Z. B.; Yamada, T. et al. Structure determination and compositional modification of body-centered tetragonal PX-phase lead titanate. Chem. Mater. 2011, 23, 2529-2535.
[32]
Light, T. B.; Eldridge, J. M.; Matthews, J. W.; Greiner, J. H. Structure of thin lead oxide layers as determined by X-ray diffraction. J. Appl. Phys. 1975, 46, 1489-1492.
[33]
Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl. Phys. Lett. 2002, 80, 309-311.
[34]
Knotek, M. L.; Feibelman, P. J. Stability of ionically bonded surfaces in ionizing environments. Surf. Sci. 1979, 90, 78-90.
[35]
Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M. H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340-11362.
[36]
Bachmatiuk, A.; Dianat, A.; Ortmann, F.; Quang, H. T.; Cichocka, M. O.; Gonzalez-Martinez, I.; Fu, L.; Rellinghaus, B.; Eckert, J.; Cuniberti, G. et al. Graphene coatings for the mitigation of electron stimulated desorption and fullerene cap formation. Chem. Mater. 2014, 26, 4998-5003.
[37]
Citrin, P. H. Interatomic auger processes: Effects on lifetimes of core hole states. Phys. Rev. Lett. 1973, 31, 1164-1167.
[38]
Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124-2132.
[39]
El Mel, A. A.; Molina-Luna, L.; Buffière, M.; Tessier, P. Y.; Du, K.; Choi, C. H.; Kleebe, H. J.; Konstantinidis, S.; Bittencourt, C.; Snyders, R. Electron beam nanosculpting of kirkendall oxide nanochannels. ACS Nano 2014, 8, 1854-1861.
[40]
Li, Y. X.; Bunes, B. R.; Zang, L.; Zhao, J.; Li, Y.; Zhu, Y. Q.; Wang, C. Y. Atomic scale imaging of nucleation and growth trajectories of an interfacial bismuth nanodroplet. ACS Nano 2016, 10, 2386-2391.
[41]
da Silva Pereira, W.; Andrés, J.; Gracia, L.; San-Miguel, M. A.; da Silva, E. Z.; Longo, E.; Longo, V. M. Elucidating the real-time Ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: Experimental evidence and theoretical insights. Phys. Chem. Chem. Phys. 2015, 17, 5352-5359.
[42]
Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 2007, 18, 335604.
Nano Research
Pages 1912-1919
Cite this article:
Zhang H, Wang W, Xu T, et al. Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Research, 2020, 13(7): 1912-1919. https://doi.org/10.1007/s12274-020-2711-2
Topics:
Part of a topical collection:

816

Views

9

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 30 November 2019
Revised: 09 February 2020
Accepted: 10 February 2020
Published: 29 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return